
 
The Interrelation of TCP Responsiveness and Smoothness 

in Heterogeneous Networks 
 
  

C. Zhang and V. Tsaoussidis 

College of Computer Science, Northeastern University 
Boston, MA 02115, USA 

{czhang, vassilis}@ccs.neu.edu 
 

 
Abstract 

 
TCP(α,β) protocols trade the congestion window 

increase value α  for the decrease ratio β , to generate 

smoother traffic patterns and to maintain a friendly 
behavior. In this paper, we study the design assumptions of 
TCP(α,β) protocols and discuss the impact of equation-
based modulation of α and β on application efficiency. We 
confirm experimentally that, in general, smoothness and 
responsiveness constitute a tradeoff; however, we uncover 
undesirable dynamics of the protocols when the network or 
flow characteristics do not follow a prescribed and static 
behavior. For example, we show that smooth backward 
adjustments confine the protocol’s capability to exploit 
resources that become available rapidly, and embarrass 
the fair and efficient growth of incoming flows. 
Furthermore, we show that in the context of wireless 
networks with high error rate, a low α dictates a 
conservative behavior that degrades the protocol 
performance with both delay-tolerant and -sensitive 
applications; and in the context of high contention of 
heterogeneous flows, a low α does not contribute to 
efficiency and friendliness.  
 
 
1. Introduction  

 
Transmission control of reliable protocols, as 

exemplified by TCP [1], is based on somewhat “blind” 
increase/decrease window mechanism that exploits the 
bandwidth availability dynamically and, meanwhile, 
avoids persistent congestion. The adjustments are modeled 
on the Additive Increase/Multiplicative Decrease algorithm 
from the perspective of fair resource allocation and 
efficient resource utilization [2]. AIMD is the core 
algorithm of standard TCP and is becoming the core 
algorithm of all transport protocols that support congestion 
control functions [3].  

The problems of standard TCP have been mainly 
investigated from two different perspectives, namely the 

application requirements and the characteristics of the 
underlying networks. The former expounds the impact of 
the transmission gaps caused by halving the transmission 
rate during congestion on the quality of delay-sensitive 
applications; authors in [4, 5, 8, 9] propose TCP-friendly 
protocols that satisfy two fundamental goals: (i) to achieve 
smooth window adjustments; this is done by reducing the 
window decrease ratio during congestion, and (ii) to 
compete fairly with TCP flows; this is approached by 
reducing the window increase factor according to a steady-
state TCP throughput equation. It has been effectively 
established that TCP can achieve application-oriented 
improvements by favoring smoothness using a gentle 
backward adjustment upon congestion, at the cost of lesser 
responsiveness (i.e., speed to approach an equilibrium) - 
through moderated upward adjustments. The latter 
perspective unfolds the need for error detection and 
classification that would permit a responsive strategy, 
oriented by the nature of the error detected (congestion in 
wired networks versus transient random errors in wireless 
networks) [7]. Implementation of such strategy requires a 
more responsive TCP.  

In this paper, we investigate the interrelation of TCP 
smoothness and responsiveness by studying the behaviors 
of TCP(α,β) protocols [8].  TCP(α,β) protocols 
parameterize the congestion window increase value α  and 
decrease ratio β , where the sender’s window size is 

increased by α  if there is no packet loss in a round-trip 
time, and the window is decreased to β  times the current 

value if there is a loss indication. We discuss the impact of 
the smoothness/responsiveness tradeoff on application 
performance, assuming initially that it follows strictly the 
friendliness-oriented α/β tradeoff. A natural question is 
therefore “under what conditions can we achieve efficiency 
and friendliness”. That is, when the prescribed conditions 
change, would their impact be symmetrical on both TCP 
and TCP-friendly protocols? Extending this question in the 
context of the present work, since friendliness is based on 
the combined dynamics of smoothness and responsiveness, 
the real question is whether the conditions affect 
symmetrically these two components of congestion 

Proceedings of the Seventh International Symposium on Computers and Communications (ISCC’02) 
1530-1346/02 $17.00 © 2002 IEEE 



control. In our discussion below, we refer to three classes 
of TCP(α , β ) protocols: (i) Standard TCP(1, ½); (ii) 

Responsive TCP is TCP(α , β ) with relatively low β  

value and high α  value; (iii) Smooth TCP is TCP(α , β ) 

with relatively high β value and low α  value. 

We study the protocols’ behavior based on a 
contrasting-pair strategy for different requirements and 
characteristics of applications and networks, respectively. 
More precisely, we compare the performance of our 
TCP(α,β) versions under the following conditions: (i) in 
wired and heterogeneous (wired and wireless) networks. 
(ii) in static and dynamic1 environments (iii) with delay-
sensitive and -tolerant applications. (iv) with single- and 
multi-protocol communication channels. Based on the 
assumptions of equation-based congestion control and on 
experimental data, we arrive at the conclusion that TCP-
friendly protocols that are based entirely on the α/β 
tradeoff may be adequate for specific applications, 
networks and scenarios; however, they are inappropriate 
for several other occasions. 

We organized the paper as follows: We give an 
overview of TCP(α,β) protocols in section 2. In Section 3 
we discuss the assumptions and conditional applications of 
equation-based congestion control. Here, we also justify 
our expectations in the context of networks with distinctive 
error characteristics (e.g. congestion versus wireless errors) 
and we highlight some observations on the dynamics of 
responsiveness and smoothness. In section 4 we justify our 
testing methodology and we select performance metrics. In 
section 5 we present the results of our experiments and in 
section 6 we highlight our conclusions. 
 
2. Trading � For � 
 

A throughput equation for standard TCP is first 
introduced in [6]. GAIMD [8] extends the equation to 
include parameters α and β: 

)321(
2

)1(
3,1min

)1(

)1(2

1
),,,(

2
2

0

0,

ppp
b

Tp
b

RTT

bTRTTpT

+










 −+
+
−

=

α
β

βα
β

βα

(1) 
where p is the loss rate; T0 is the retransmission timeout 
value; b is the  number of packets acknowledged by each 
ACK. The overall throughput of TCP-Friendly ( )βα ,  

protocols is bounded by the average throughput of standard 
TCP ( )5.0,1 == βα , which means that equation (2), which 

is derived from (1) (see [8]) could provide a rough guide to 
achieve friendliness. 
                 ),,,(),,,( 05.0,10, bTRTTpTbTRTTpT =βα          (2) 

                                                           
1 From the perspective of the participating flows with criterion whether 
their number is fixed or not. 

Authors of [8] derive from (1) and (2) a simple relationship 
for α  and β :  

                                   3/)1(4 2βα −=                             (3)  

Based on experiments, they propose a 8/7=β  as the 

appropriate value for the reduced the window (i.e. less 
rapidly than TCP does). For 8/7=β , (3) gives an 

increase value 31.0=α . 
The observations of the window dynamics and event 

losses are frequently assumed within a time period of a 
congestion epoch [4], which reflects the uninterrupted 
growing lifetime of congestion window. More precisely, a 
congestion epoch begins with βW packets, increased by α 
packets per RTT and reaching a congestion window of W 
packets, when a packet is dropped. The congestion window 
is then decreased to βW. Hence, a congestion epoch 
involves 
                   n = (1-β) * W / α + 1 RTTs        (4) 
Assuming that the capacity of the bottleneck link is B 
packets per second and the number of active flows going 
through the bottleneck router is N, and assuming a control 
system as in [2], we further calculate that: 
             W = B * RTT / N                 (5) 
 
3. Observations on the Dynamics of 
Responsiveness and Smoothness 
 
 We present below some observations on the dynamics 
of TCP responsiveness and smoothness. We use the 
observations to justify our experimental results and also to 
present further assumptions in the form of hypotheses. We 
use the results to verify the correctness of the hypotheses. 
 
Observation 1: It takes several RTTs for a smallα to pay 
back the bandwidth credit of a high β. 

Equation (1) is modeled by calculating the average 
throughput over a congestion epoch, which is associated 
with several RTTs. Since equation (1) gives the steady 
state TCP throughput, in a dynamic network where 
conditions changing rapidly, friendliness might not be 
attained. More precisely, based on (4) we conclude that (1) 
and (2) can be achieved at a time n RTTs or later since 
multiple drops will extend further the time of convergence. 
Based on (4) and (5) we further conclude that the time 
period required for (1) and (2) to hold is in reverse 
proportion to the number of flows within a fixed 
bandwidth channel; the smaller the number, the larger the 
window and therefore the longer the convergence time. 
This is confirmed by our results shown in section 5.2. 
Finally, the propagation delay has a direct impact on the 
time required for TCP(α, β) to reach a full-window size. 
Practically (and deterministically) this means that for a 
window of 64KB and an RTT of 100ms TCP(1, ½) needs 
at least 3.2 seconds to reach the maximum window size.  

Proceedings of the Seventh International Symposium on Computers and Communications (ISCC’02) 
1530-1346/02 $17.00 © 2002 IEEE 



 
Observation 2: In the case of multiple packet drops, the 
aggressive / conservative behavior of TCP(α, β) is 
dominated by α. Hence, a smooth TCP may not balance 
low responsiveness with smoothness in heterogeneous 
networks. 

 A hidden assumption behind (3) is that when packet 
drops occur at the end of the congestion epoch, the window 
decreasing by a factor of (1-β) is applied only once. 
However, multiple packet drops could cause the window 
size to be decreased multiple times, or they could also 
cause the retransmission timer to expire. At the end, it is 
possible that the window size and the ssthresh could be 
decreased down to 2 segments, even with smooth 
backward adjustments. Under such scenarios, the 
performance of applications (including real-time 
applications) is not affected by how slowly the sender 
reduces its sending rate, but rather by how fast it can 
recover from the error and restore its sending rate.  Note 
that our scenario is not unrealistic. For example, in mobile 
networks, burst correlated errors and handoffs generate this 
kind of error pattern. The aggressiveness of responsive 
TCP is the desirable behavior, because in this scenario the 
bandwidth is still available though the packet dropping rate 
is high. This is confirmed by the results shown in sections 
5.1 and 5.3.  
 
Observation 3: When additional Bandwidth becomes 
available, a responsive TCP approaches its fair share 
faster than a smooth TCP. Hence, in a dynamic system of 
multiple, smooth TCP flows, if a number of flows leaves 
the system earlier than others, the remaining flows cannot 
exploit the bandwidth well. 

It can be seen from observation 1 that a smooth TCP 
extends the duration of the congestion epoch. Due to a 
smaller α, the protocol requires more steps to approach its 
fair-share, when some flows leave the system and 
bandwidth becomes available. Obviously, responsiveness 
is here too the dominant parameter of efficiency since it 
reflects the protocol’s capability to exploit the available 
bandwidth. See our results in section 5.2. 
 
Hypothesis 1: In a dynamic system where contention 
gradually increases, if flows are homogeneous2 and β is 
high, the smooth window adjustments of existing flows may 
not guarantee friendliness to incoming flows. 

A conclusion of the control system presented in [2] is 
that the flows approach fairness faster when the window 
oscillations are larger. Since improved smoothness (hence 
degraded responsiveness) implies more steps to reach the 
desired level of fairness, convergence to fairness can be 
extended. Essentially, when new flows enter a system of 
multiple smooth TCP flows at equilibrium, the smooth 

                                                           
2 (α, β) is the same for all flows. 

backward adjustment is expected to extend the time to 
converge to fairness. In such case, it is desirable that 
existing flows drop their sending rate quickly to make 
available bandwidth for new flows. See our results in 
section 5.2. 

 
Hypothesis 2: In a system where flows are heterogeneous3 
and contention is high, responsiveness is the dominant 
factor of bandwidth utilization. Hence, when smooth and 
responsive protocols co-exist and contention is high, the 
responsive protocols may be favored. 

Due to high contention, the initial resources of each 
flow are rather modest and the multiplicative decrease is 
rarely activated; the increasing rate of smooth protocols 
has also a minor effect, in contrast to the responsive 
protocols that manage occasionally to increase their 
windows. Here responsiveness is expected to dominate the 
consumption of bandwidth. If multiple protocols co-exist 
in this context, smooth TCP may be too conservative, 
allowing the standard TCP to consume bandwidth more 
aggressively. This is shown by the results in section 5.4.  
 
Hypothesis 3. Since throughput is not a direct function of 
the sending rate, throughput of smooth TCP may be 
greater than the throughput of standard and responsive 
TCP.  

Equation (2) indicates that the protocols will always 
achieve about the same throughput as the standard TCP. 
However, the assumption of equations (1) – (3) that the 
system throughput increases in proportion to the sending 
rate, is inaccurate. After the load reaches the network 
capacity, throughput stops increasing. If the load is 
increased beyond this point, called knee in [2], the queue 
length builds up. Throughput may suddenly drop when the 
load increases beyond a point cliff, where packets start 
experiencing significant delay, or may be dropped. An 
efficient congestion control mechanism should keep the 
network operating in the zone between the knee and the 
cliff, where throughput is maximal. In a homogeneous 
environment with high bandwidth and large fair share, a 
responsive TCP is likely to operate outside that zone at the 
beginning of the congestion epoch. This degrades the 
protocol’s capability to utilize the available bandwidth 
throughout the connection, pace equation (2)’s projection. 
The experimental results are shown in section 5.1. 

 
4. Experimental Methodology 
 
4.1 Testing Plan 
 

We have implemented our testing plan on the ns-2 
network simulator. The network topology used as a test-

                                                           
3 (α, β) is not the same for all flows. 

Proceedings of the Seventh International Symposium on Computers and Communications (ISCC’02) 
1530-1346/02 $17.00 © 2002 IEEE 



bed is the typical single-bottleneck dumbbell, as shown in 
Figure. 1. The bottleneck link capacity (bw_bottleneck), 
the access links to source nodes (bw_src) and the access 
links to sink nodes (bw_dst) were occasionally re-
configured for the different scenarios.  In most cases 
however, bw_bottleneck = bw_src = bw_dst unless it is 
pointed out explicitly otherwise.  For simulations of 
heterogeneous (wired and wireless) networks, ns-2 error 
models were inserted into the access links at the sink 
nodes.  The Bernoulli model was used to simulate link-
level errors with configurable packet error rate (PER). The 
number of flows (or the number of source-sink pairs) N, 
varied from experiment to experiment. The connection 
time was fixed at 100 seconds. 

 

bw_bottleneck 

25ms 

5ms 
bw_dst 

5ms 
bw_src 

Sink N 
Source N 

Sink 1 Source 1 

Figure 1. Network topology 
 

In order to validate our statements about the behavior 
of equation-based protocols with parameters α and β, we 
selected and evaluated four protocols that that span across 
a spectrum of smoothness and responsiveness and satisfy 
the TCP-friendly equation (3). Our four versions are 
TCP(0.31, 0.875), TCP(0.583, 0.75), TCP(1, 0.5) and 
TCP(1.25, 0.25). TCP(1, 0.5) is the standard TCP. 

We begin our testing with simulations of ftp 
applications, over wired and heterogeneous (wired and 
wireless) networks in a static environment. To evaluate 
how efficiently and fairly the protocols can exploit the 
bandwidth that becomes available, or can share the existing 
bandwidth with new incoming flows, we considered 
dynamic scenarios where the number of active flows 
gradually falls off or picks up, respectively, during the 
experimentation time.  

We evaluate the protocols’ performance with delay-
sensitive applications, by configuring the ns-2 CBR 
(Constant Bit Rate) agent above the TCP(α, β) protocols; 
we simulate a playback-enabled application with data rate 
1Mbps. The bottleneck link bandwidth satisfies the 
condition 

 1Mbps * N = bw_bottleneck 
in order to allow for provisioning just enough bandwidth to 
all flows.  

Finally, we compare the TCP-friendliness of TCP(α, 
β) protocols by flows of protocol pairs competing for the 
channel’s bandwidth so that their “friendliness” can be 
adequately demonstrated. One protocol is the TCP(α, β) 
under study, where (α, β) ≠ (1, 0.5); the other is TCP(1, 
0.5), the standard TCP.    
 

4.2 Performance Metrics 
 

In static environment, the System Goodput, defined as 
the sum of the goodput of all flows, is used to measure the 
overall system efficiency in terms of bandwidth utilization 
at the receivers. Similarly, we define Aggregated Protocol 
Goodput, as the goodput sum of all the flows that 
correspond to a particular protocol. The metric is used in 
protocol-pair tests to enable comparison of protocol 
friendliness. Fairness is measured by the Goodput Fairness 
Index, derived from the formula given in [2]. 

The Allotted System Goodput (ASG), is defined as the 
system goodput within one second, and is used to capture 
the particularity of protocol behavior in dynamic 
environments. Similarly, the Allotted Fairness is defined as 
the corresponding fairness within one second. 

In experiments with real time applications, the 
application attempts to read and consume up to 125KB 
every second, (assuming the playback buffer is exactly 125 
KB). Because of the sending window fluctuation and the 
transmission gaps of TCP(α, β), there are instances when 
the data is unavailable to the application. The percentage of 
application’s successful attempts to read x% of 125KB 
data from the playback buffer, namely x% Application 
Success Percentage, is used to measure the protocol’s 
smoothness and real-time performance: 

 Application Success Percentage = 100 * 
(Success / Attempts) % 

where, Success is defined as:  
Success:(Allotted Goodput / Targeted 
Receiving Rate) > x% 

In our experimental configuration, Targeted Receiving 
Rate is 1Mbps. From another perspective, the metric x% 
Application Success Percentage captures the number of 
discrete time slots when the flow achieves at least x% of 1 
Mbps data receiving rate.  
 
5. Results and Discussion 
 
5.1 Static Environments 
 

 
The experiments conducted on wired networks show 

that when the fair-share for each flow is large, a smooth 

Proceedings of the Seventh International Symposium on Computers and Communications (ISCC’02) 
1530-1346/02 $17.00 © 2002 IEEE 



downward adjustment contributes to exploiting the system 
goodput better. The number of flows ranges from 10 to 100 
in the experiments, and the system goodput is measured on 
10Mbps and 100Mbps bottleneck, as shown in Figures 2 
and 3, respectively. Although the results on 10Mbps links 
comply with the projection of TCP-friendly equations, the 
result with 100Mbps bottleneck are supportive to our 3rd 
hypothesis of section 3 although the arguments made there 
may not constitute the exclusive justification.  

 
In contrast to the results with wired networks, the 

protocols’ goodput performance over heterogeneous 
(wired/wireless) networks highlight the weakness of the 
high β choice. Results with 100 Mbps bottleneck link are 
depicted in figures 4. When the error rate is low, the 
smooth TCP attain higher goodput, and the comparative 
protocol performance is not far from the previous scenario. 
With random transient errors increasing from 0 to 0.05 
PER on the wireless link, smooth TCP’s goodput 
performance degrades faster and responsive TCP 
outperforms the smooth one. This is justified by our 2nd 
observation in section 3. Here the choice of β doesn’t make 
much difference, unlike the high α value of TCP(1.25, 
0.25) which permits a more aggressive behavior. Note that 
the high wireless error rate is different from the high 
congestion, although in both cases the window size is 
reduced to a small value due to high packet dropping rate. 
In the former case, the bandwidth is available; in the latter 
case, the available bandwidth is low and the aggressiveness 
due to the high α value doesn’t improve the system 
goodput, as shown in Figure 2. 

 

The next scenario presented here intends to provide a 
framework for characterizing protocol aggressiveness 
when bandwidth becomes available rapidly in 
heterogeneous networks. Every 5 seconds, the 10Mbps 
wireless links are interrupted by a handoff, during which 
all transmitted packets were lost and the channel’s 
bandwidth was becoming available immediately 
afterwards. The length of the handoff period is 
exponentially distributed, with a mean of 1 second. Figure 
5 plots the allotted goodput of one flow. Since bandwidth 
becomes available immediately after the handoff, a high 
sending rate reflects a desirable behavior. Since the 
handoff period is long enough, all protocols will reduce 
their window size and ssthresh to 2. After the handoff 
period is over, a responsive TCP recovers faster and attains 
smoother rates.  

 
 
5.2. Dynamic Environments 
 

 
Our observations in section 3 call for a comparison of 

TCP(α,β) protocols, with increasing or decreasing number 
of flows. Our first experiment is conducted over a wired 
network with 100Mbps bottleneck link. The number of 
flows N increases with time as follows: 










≤≤
≤≤
≤≤

≤≤

=

sec)3025(100

sec)2520(50

sec)2015(25

sec)150(12

t

t

t

t

N  

Proceedings of the Seventh International Symposium on Computers and Communications (ISCC’02) 
1530-1346/02 $17.00 © 2002 IEEE 



That is, N doubles every 5 seconds after a 15-second 
period. Note that the metrics now are allotted fairness, as 
shown in Figure 6. [9] claims that generating smoother 
traffic improves allotted fairness, as confirmed in the time 
period from t0=0 to t1=15 in Figure 6. However, when new 
flows join after 15 seconds, fairness displays a dependency 
on the sending rate of existing and incoming flows. In this 
context, the responsive TCP achieves better fairness. This 
result is in accord to our 1st hypothesis in section 3. When 
new flows come in, fairness drops for all protocols. 
However, the fairness of TCP(1.25, 0.25) recovers faster; 
after a 20-second period the responsive TCP displays the 
highest fairness, as it was anticipated by our 1st hypothesis. 
 

 
In our next experiment, the number of flows gradually 

decreases:  










≤≤
≤≤
≤≤

≤≤

=

sec)3025(12

sec)2520(25

sec)2015(50

sec)150(100

t

t

t

t

N  

That is, after a 15-second period, half of the flows 
complete their task and leave the channel every 5 seconds. 
The results of allotted system goodput are shown in Figure 
7. From t0=0 to t1=15, when the number of flows is fixed, 
the higher the β, the higher the allotted goodput. When 
flows start leaving the channel (after 15 seconds), the 
available bandwidth gradually increases; the goodput 
initially decreases for all protocols since the resource 
consumption suddenly drops. Obviously aggressiveness is 
now a desirable behavior and it is not surprising that 
TCP(0.31, 0.875)’s achieves the lowest performance; this 
result is justified by our 3rd observation in section 3. Due to 
the tradeoff of α and β, TCP(1, 0.5)’s goodput is the 
highest, although TCP(1.25, 0.25)’s recovery speed is the 
fastest after the step decrease of participating flows. The 
results in Figure 7 are also justified by our 1st observation: 
the smaller the number of flows, the longer it takes smooth 
TCP to exploit the available bandwidth when the fair share 
step-increases. 
 
 

5.3 Performance of Real-time Applications 
  

The real-time performance comparison of the 
protocols is shown in Figure 8. We simulated 100 flows 
over a 100 Mbps bottleneck, with the wireless error rate 
varying from 0.0 to 0.4 in experiments. Note that the 
metrics now are 70% application success percentage. 
When the error rate is low, smooth TCP outperforms 
responsive TCP, as anticipated by the design goals of TCP-
friendly protocols. However, when the error rate becomes 
dense the application success percentage of TCP(0.31, 
0.875) degrades sharply. The reason behind this behavior 
can be found in our 2nd observation in section 3: when the 
error rate is high, α is the dominant factor. Then, the 
throughput smoothness, which affects the performance of 
real-time applications, is not determined by how slowly the 
sender reduces it’s sending rate, but rather by how fast it 
can recover from the loss and restore an appropriate 
sending rate.  

 
 
5.4 Friendliness 
 

TCP-friendliness tests were conducted with a number 
of participating flows ranging from 10 to a 100. Flows are 
divided into two groups per experiment. Half of the flows 
are instances of one protocol: TCP(0.31, 0.875), 
TCP(0.583, 0.75) or TCP(1.25, 0.25). The other half are 
standard TCP flows and serve as the reference for 
comparison. Ideally, each group of flows should consume 
exactly half of the bottleneck link capacity. A group that 
exceeds its fair-share at the expense of the other group’s 
aggregated goodput would mean that the specific protocol 
is too aggressive. From the results shown in Figures 9, 10 
and 11, we observe that with 10 Mbps bottleneck and a 
large number of flows, smooth TCP appears to be too 
conservative, allowing the standard TCP to consume 
bandwidth more aggressively, exceeding its fair share. This 
result appears initially conflicting with the results of Figure 
3 where the smooth TCP achieved higher goodput. 
However, in this experiment the flows are heterogeneous. 
It appears that here responsiveness dominates the 

Proceedings of the Seventh International Symposium on Computers and Communications (ISCC’02) 
1530-1346/02 $17.00 © 2002 IEEE 



consumption of bandwidth, as it is presented in the 2nd 
hypothesis.  

The experiments on the 100Mbps bottleneck (not 
presented here due to the space limitation) demonstrate, 
however, with large bandwidth and consequently a 
relatively larger fair share, TCP(0.31, 0.875), TCP(0.583, 
0.75) and TCP(1.25, 0.25) compete fairly with standard 
TCP. 

 
 

 
 

 
 
6. Conclusions and future work 

 
We discussed the interrelation of responsiveness and 

smoothness in the context of the tradeoff of the additive 
increase rate and the multiplicative decrease ratio of TCP 
windows. We observed that there are occasions where high 

responsiveness is not balanced by improved smoothness, 
and vice versa. Such occasions may arise from the 
requirements of the applications, the level of network 
contention, the underlying network characteristics, or the 
system dynamics.  

By and large, targeting responsiveness by using an 
aggressive additive increase or targeting smoothness by 
using a modest reduction through multiplicative decrease, 
is not the appropriate strategy. We conclude that equation-
based adjustments are certainly a powerful mechanism for 
TCP-friendly congestion control, but it can guarantee 
neither efficiency nor friendliness on its own, in the 
context of heterogeneous networks. A supportive 
mechanism for error classification and bandwidth detection 
may complement the equation-based adjustments and 
produce positive dynamics. Our future work is scheduled 
for this target. 
 
7. References 
 
[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion 

Control”, RFC2581, April 1999. 
 
[2] D.-M. Chiu and R. Jain, “Analysis of the Increase and 

Decrease Algorithms for Congestion Avoidance in 
Computer Networks”, Computer Networks and ISDN 
Systems, 17(1):1-14, 1989. 

 
[3] S. Floyd, “Congestion Control Principles”, RFC 2914, 

September 2000. 
 
[4] S. Floyd, M. Handley and J. Padhye, “A Comparison of 

Equation-based and AIMD Congestion Control”, May 2000. 
URL: http://www.aciri.org/tfrc/. 

 
[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-

Based Congestion Control for Unicast Applications”, 
Proceedings of ACM SIGCOMM 2000, August 2000. 

 
[6] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modeling 

TCP Throughput: A Simple Model and its Empirical 
Validation", ACM SIGCOMM 1998, August 1998. 

 
[7] V. Tsaoussidis and I. Matta, “Open issues on TCP for 

Mobile Computing”, Journal of Wireless Communications 
and Mobile Computing, Wiley Academic Publishers, Issue 
2, Vol. 2, February 2002. 

 
[8] Y.R. Yang and S.S. Lam, “General AIMD Congestion 

Control”, Proceedings of the 8th International Conference on 
Network Protocols”, Osaka, Japan, November 2000. 

 
[9] Y.R. Yang, M.S. Kim and S.S. Lam, “Transient Behaviors 

of TCP-friendly Congestion Control Protocols”, Proceedings 
of IEEE INFOCOM 2001, April 2001. 

 
 

Proceedings of the Seventh International Symposium on Computers and Communications (ISCC’02) 
1530-1346/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


