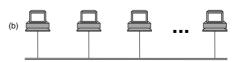
Introduction

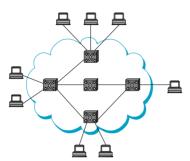
Outline

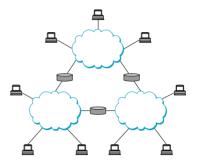
Statistical Multiplexing
Inter-Process Communication
Network Architecture
Performance Metrics
Implementation Issues


.

Building Blocks

- Nodes: PC, special-purpose hardware...
 - hosts
 - switches
- Links: coax cable, optical fiber...
 - point-to-point




- multiple access

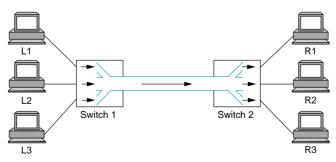
Switched Networks

- A network can be defined recursively as...
 - two or more nodes connected by a link, or
- two or more networks connected by a node

3

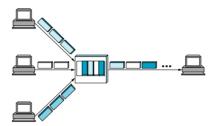
Strategies

- Circuit switching: carry bit streams
 - original telephone network
- Packet switching: store-and-forward messages
 - Internet


Addressing and Routing

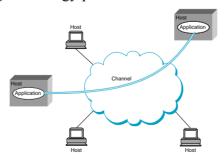
- Address: byte-string that identifies a node
 - usually unique
- Routing: process of forwarding messages to the destination node based on its address
- Types of addresses
 - unicast: node-specific
 - broadcast: all nodes on the network
 - multicast: some subset of nodes on the network

5


Multiplexing

- Time-Division Multiplexing (TDM)
- Frequency-Division Multiplexing (FDM)

Statistical Multiplexing


- On-demand time-division
- Schedule link on a per-packet basis
- Packets from different sources interleaved on link
- Buffer packets that are *contending* for the link
- Buffer (queue) overflow is called *congestion*

7

Inter-Process Communication

- Turn host-to-host connectivity into process-to-process communication.
- Fill gap between what applications expect and what the underlying technology provides.

IPC Abstractions

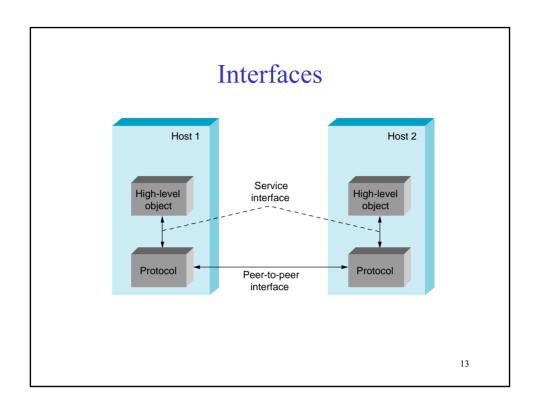
- Request/Reply
 - distributed file systems
 - digital libraries (web)
 - Based on TCP
- Stream-Based
 - video: sequence of frames
 - 1/4 NTSC = 352x240 pixels
 - (352 x 240 x 24)/8=247.5KB
 - 30 fps = 7500 KBps = 60 Mbps
 - video applications
 - on-demand video
 - · video conferencing
 - Based on UDP

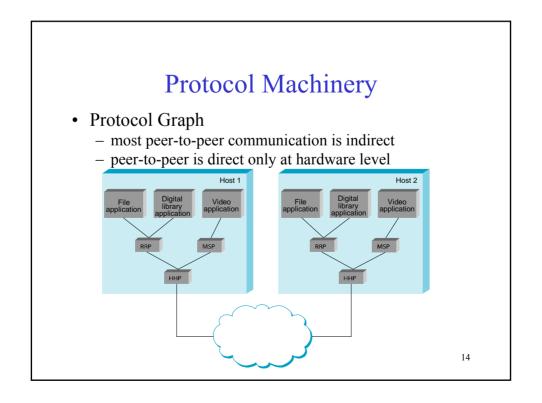
9

What Goes Wrong in the Network?

- Bit-level errors (electrical interference)
- Packet-level errors (congestion)
- · Link and node failures
- Packets are delayed
- Packets are deliver out-of-order
- Third parties eavesdrop

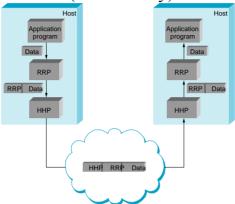
Layering


- Use abstractions to hide complexity
- Abstraction naturally lead to layering
- Alternative abstractions at each layer (extensible)

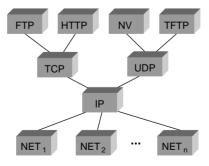

Application programs	
Request/reply	Message stream
channel	channel
Host-to-host connectivity	
Hardware	

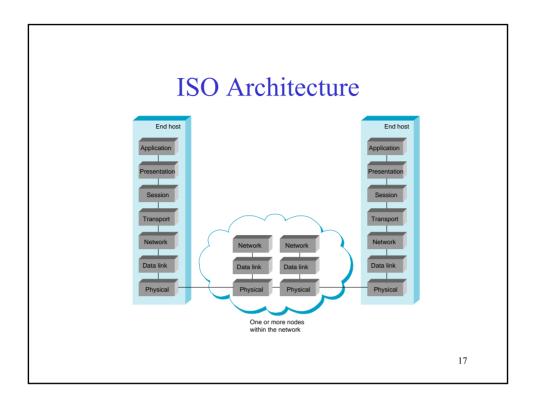
11

Protocols


- Building blocks of a network architecture
- Each protocol object has two different interfaces
 - service interface: operations on this protocol
 - peer-to-peer interface: messages exchanged with peer
- Term "protocol" is overloaded
 - specification of peer-to-peer interface
 - module that implements this interface

Machinery (cont)


- Multiplexing and Demultiplexing (demux key)
- Encapsulation (header/body)



15

Internet Architecture

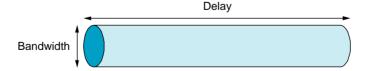
- Defined by Internet Engineering Task Force (IETF)
- Hourglass Design
- Application vs Application Protocol (FTP, HTTP)

Performance Metrics

- Bandwidth (throughput)
 - data transmitted per time unit
 - link versus end-to-end
 - notation
 - $KB = 2^{10}$ bytes
 - Mbps = 10^6 bits per second
- Latency (delay)
 - time to send message from point A to point B
 - one-way versus round-trip time (RTT)
 - components

Latency = Propagation + Transmit + Queue Propagation = Distance / c

Transmit = Size / Bandwidth


Bandwidth versus Latency

- · Latency-Bound
 - 1-byte request / reply with 100ms RTT
 - 1Mbps Channel: transmit time 8 μs.
 - 100Mbps Channel: transmit time 0.08 μs.
- Bandwidth-Bound
 - 25MB transfer
 - 10Mbps Channel: transmit time 20 seconds
 - The effect of RTT is neglegible.
- Throughput = TransferSize / TransferTime
- TransferTime = RTT + 1/Bandwidth x TransferSize

19

Delay x Bandwidth Product

- Amount of data "in flight" or "in the pipe"
- Usually relative to RTT
- Example: $100 \text{ms} \times 45 \text{Mbps} = 560 \text{KB}$

Socket API

- Creating a socket int socket(int domain, int type, int protocol)
 - domain = PF_INET, PF_UNIX
 - type = SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
- Passive Open (on server)

 int bind(int socket, struct sockaddr *addr, int addr_len)
 int listen(int socket, int backlog)
 int accept(int socket, struct sockaddr *addr, int addr_len)

21

Sockets (cont)

- Active Open (on client)
 int connect(int socket, struct sockaddr *addr,
 int addr len)
- Sending/Receiving Messages
 int send(int socket, char *msg, int mlen, int flags)
 int recv(int socket, char *buf, int blen, int flags)