COP 6611 Advanced Operating System

Communication

Chi Zhang
czhang@cs.fiu.edu

Outline
Layered Protocols
Remote Procedure Call (RPC)
Remote Object Invocation
M essage-Oriented Communication

Layered Protocols

T Application protocol T
Application PP P 7
. Presentation protocol
Presentation R ALl i o -
Session E::Iq...__..___3_9_%5_'9’_‘_9’_0_‘?991_______ "E:: 5
Transport protocol 1

Transport 4
Network protocol

Network 3
Data link protocol

Data link | - 2

|.q...__.._P_hxs_i@a!p_rgtqqql________ ,.|
Physical 9

Network

Each layer can be changed without the other ones being affected.

3

Client-Server TCP

Client Server Client Server
TTSYN SYN, request. FIN
"--*..2 i
_ SYN,ACK(SYN) SYN,ACK(FIN) answer,FIN | 2
-« e
I — 3 —
4l ACK(SYN) T ACKEFIN)
5 tequesl_____- > i — -
TTRAN— ™
-
_____..6
__ ACK(reg+FIN)
il : 7
anml:__'_'_____..--B
- — FIN™
e
Time 91— Time
| ACK(FIN |
\ ' v
(a) {b)

a) Normal operation of TCP.
b) Transactional TCP. N

Application Protocols

= Application Protocols # Applications

» HyperText Transfer Protocol (HTTP)
* HTML
= Java RMI
= XML / SOAP
= Client-Server (Request-Reply)
= Not blocked by firewall

Conventiona Procedure Call

Stack pointer
Main program's / Main program's
local variables Pf local variables

bytes

buf

fd

return address
read's local
variables

-

(a) (b)

a) Parameter passing in aloca procedure cal: the stack before the call to read

b) The stack while the called procedure is active 6

Client and Server Stubs

- Wait for result
1ENT ———— - — ——
A *
Call remote Return
procedure from call
Request Reply
Server -----ooooo oo ——— oo

Call local procedure Time ——»
and return results

Principle of RPC between a client and server program.

Steps of a Remote Procedure Call

Client procedure calls client stub in normal way
Client stub builds message, callslocal OS
Client's OS sends message to remote OS
Remote OS gives message to server stub
Server stub unpacks parameters, calls server
Server does work, returns result to the stub
Server stub packsit in message, callslocal OS
Server's OS sends message to client's OS
Client's OS gives message to client stub

10 Stub unpacks result, returnsto client

Net effect: RPC asif LPC (local)

©CooNoO~wDdPE

Passing Vaue Parameters (1)

= Which procedures call?

= Machines have different data
representations.
» Big Endians and Endian?
= How to pass pointers?
= Copy array into messages.
* Input or Output?
= Cannot handlelists

Interface Definition Languages (IDL)
= A collection of procedures
= Compiled into client or server stub.

Passing Value Parameters (2)

Client machine

Client process

Server machine

1. Client call to
procedure

Server process

Implementation
of add

6. Stub makes
local call to "add"

Server stub
Client stub b = addl))
P 71 Tk ST

proc: "add proc: "add

int: _val() 2. Stub buids intval() | SHeced Lol

int: walij) message int: wal(j) message

[ddll j
- proc: "a 4. Server OS
Client OS int: val(i) Server 0S hands message
int: wal(j)

to server stub

3. Message is sent
across the network

Steps involved in doing remote computation through RPC

10

Parameter Specification and Stub Generation

foobar's local

a) A procedure variables 5
b) The corresponding message. y
5
Z[0]
Z[1]
foobar(char x; float y; int z[3]) 0]
{ Z[3]
} 2
(a) (b)

11

Asynchronous RPC

Client Wait for result Client Wait for acceptance
- o 7 T4y
\ | \ !
Call remote | [Return Call remote | /' Return
procedure | f." from call procedure | ,ff from call
\ ,.I \
Request | Reply Request * .-’II Accept request

______________ T N e b ey e .~ — — ————————

Server Call local procedure Time —» Server Call local procedure Time —»™

and return results

(a) (b)

a) Theinterconnection between client and server in a
traditional RPC

b) Theinteraction using asynchronous RPC 12

Distributed Objects

Client machine Server machine
| object
Client Server rs
(g State
Same }
Gient interface L[Method
invokes » _} as object _ -
a method 7 [
Y ~te
" ﬁ:‘:;l}?;gn e "* "~ Interface
Proxy e et Cicl Skeleton
at object A
Client OS Server O3S

|

>

Network

Marshalled invocation
is passed across network

Common organization of aremote object with client-side proxy.

Binding a Client to an Object

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = ...; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(@
Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = ...; //Nnitialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

a) (@) Examplewith implicit binding using only global references
b) (b) Example with explicit binding using global and local referSnc&s

Parameter Passing

Machine A Machine B
| Local object ' ———
Remote ohject
; LDT_a']l 1l 01 Remote ‘ o) |
reference ?— reference R1 ,_-1_' T W
. . | L
Client code with \
RMI to server at C N
(proxy) New local | 1 ~
1’ reference _ [Copy of O1 J
Remote FY N
invocation with T . el T
L1 and R1 as o Copy of R1 to O2
parameters
Machine C Server code

(method implementation)

The situation when passing an object by reference or by value.

15

Other Issues

Object Reference

» network address + endpoint (TCP port) + object ID
» remote registry

Static vs. Dynamic Invocation

= fobject.append(int)

= invoke(fobject, id(append), int)

Clone

Synchronization

A proxy can be serialized and sent to another
process, to be used as areference.

16

Persistence and Synchronicity in Communication (1)

Messaging interface

Sending host Communication server Communication server Receiving host
' / Buffer independent
L / Routing of communicating Routing N
Application || |/ L program hgsts T Application
Pl i / [¥l
I y) | Toother (remote) v ———
|_| |_‘ communication L—J LJ EI
ﬂ: —l= server N — = =¥
0s / 0s . i os \'_\OS
v \
A | R S| | | —) i
e Sy \
Local buffer e { Internetwork 7N Local buffer

e

——— e ——— Incoming message

General organization of acommunication system in which hosts are

connected through a network .

Persistence and Synchronicity in Communication (2)

A sends message A sends message

. A stopped
and continues ﬁ; ﬁ:ﬁﬁped and waits until accepted runnigg

A /f'J“g“\ ___________
A A

Message is stored
at B's location for

later delivery \ Time
- —»

. B starts and Bis not B starts and
Bis not receives running receives
running message message

(a) (&)

a) Persistent asynchronous communication

b) Persistent synchronous communication 18

A sends message
and continues

Persistence and Synchronicity in Communication (3)

Send request and wait

until received
_gf S=ocooooosoc: *\ O
A \ Message can be A | 4
'|, _sentonly fBis | l,"
\4 running Request '|I |': ACK
Time = receweq__ ".‘ f Time
B ===-- JJY—I B — ‘.“:1_}{__'{:‘\. -2 »
h B receives Running, burdoing F’chess
message something else request
(c) {d)

c)

Transient asynchronous communication
d)

Recei pt-based transient synchronous communication

19

Persistence and Synchronicity in Communication (4)

Send request and wait until Send request
accepted

‘and wait for reply,
______ (6 — S A — e
“". _* Y\
Request \ll ll'll Reque5t '|I‘| |l-'I Acoepted
is received I\n f al T is received | { Ti
/ ime / ime
po—ax L sy, [l >
Running, but doing Process Running, but doing Process
something else request something else request
(@) (®

€)
f)

Delivery-based transient synchronous communication at
message delivery

Response-based transient synchronous communication

10

Berkeley Sockets (1)

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection

Socket primitives for TCP/IP.

21
Berkeley Sockets (2)
Server /‘_\)
[socket] bind | listen |- aciept}g!@—ﬂ write —»{ close |
Synchronization point —bi Jf’ Communication\\\

|
|
I

V I ‘
socket Mconnect- ™ wiite ——» read close |
Client

Connection-oriented communication pattern using sockets.

22

11

The Message-Passing Interface (MPI)

Primitive Meaning
MPI_bsend Append outgoing message to a local send buffer
MPI1_send Send a message and wait until copied to local or remote buffer
MPI1_ssend Send a message and wait until receipt starts

MPI1_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

Some of the most intuitive message-passing primitives of MPI
M essage-oriented Transient Communication 2

Message-Queuing Model (1)

Sender Sender Sender Sender
running running passive passive

7W """ L

M

B

Receiver Receiver Receiver Receiver
running passive running passive
(@) (b} © (@

Persistent Asynchronous Communication: Intermediate-term storage for
messages, without requiring the sender or receiver always active

12

Message-Queuing Model (2)

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block.
Notify ;ZS;SLI a handler to be called when a message is put into the specified

Basic interface to a queue in a message-queuing system.

25

General Architecture of a Message-Queuing System (1)

Look-up
Sender _|— transport-level Receiver
o address of queue
//'.
/
Queuing - Queue-level __}— Queuing
layer Y address layer
Local OS ~ Address look-up Ry
database T —
4 J -
~ -~ Transport-level
Network address

The relationship between queue-level addressing and network-level

addressing.

26

13

General Architecture of a Message-Queuing System (2)

Sender A
Application]
A5 Application
/A Receive
{ ueue — AT
| _ql T R2 1 Ny
. Message [—— 11—
T\ ‘9 >
Send queue 4 | = w
= r »l
= L Application
[
[E— /
I T

111 4y
[¢ 10T ‘ > ﬁ Receiver B
Application
Router

The general organization of a message-queuing system with routers.

27
Database with
Source client Message broker conversion rules Destination client
\ | /
h | « [| 4
Broker
program
RN
H - = F‘ ﬂmQueuing ﬁ
N - — layer N
oS oS 0s
Network

The genera organization of a message broker in a message-queyjjng
system.

14

Applications of Message-Queuing Systems

= Applications with more complex requirements
than Emails
» Guaranteed delivery
= Priorities
= Logging
= Multicast
» |oad balancing
» Fault tolerating
» Transaction
» E.g. Integrate a collection of database
applications

29

Example: IBM MQSeries

Client's receive

Sending client

Routing table

Send queue

queue

Receiving client

Y A ____ r
Queue Queue |
Program manager / manager / Program
MQ Interface ;f') . TR TP o a. ‘j‘
‘,I—| Si' [j [Soeo "
erver erver ')
‘ Stub tub ‘MCAHMCA‘ MC"_‘MCA stub | ‘ Stub
A) (R
P) s S N]
RPC” Local network / NN
/ Internetwork .
/L i
(synchronous) AN ——"To cther remote

General organization of IBM's MQSeries message-queuing system.

Message passing-;- T

{asynchronous)

queue managers

30

15

Channels

» Transfer aong the channel can take place only if
both its sending and receiving MCA are running.
= Configure the send queue to set off atrigger when a
message is enqueued.
» Thetrigger starts the sending MCA
» The sending MCA sends a control message
requesting the other MCA to be started.
= A daemon listens to a well-known address

» Channels are stopped automatically after a
specified idle time.

31
Alias table Routing table f 1
LA1 |OMC aMB | sa1 Alias table Routing table
LA2 QMD‘ lomc | so1 ‘ [La1 [ama] [QMA] so1 |
lomp| SQz | LAz [aMD| |amc|sat
aMD | sail
222 | sat
Qma T T = sa
- A Y = ame
Routing tablT sq1 . lame Routing table
ama | sat P) T]
v) amA | so1 |
amc| sQ2| gop IR/ — ame | sot
ame| sat | T | e e emolsal
Alias table | (P o
LAl | oMA T |l s
LAZ | aMC I
aQmD B)

The general organization of an MQSeries queuing network using routing

tables and aliases. o

16

Message Transfer (2)

Primitive Description
MQopen Open a (possibly remote) queue
MQclose Close a queue
MQput Put a message into an opened queue
MQget Get a message from a (local) queue

Primitives available in an IBM MQSeries MQI

33

17

