
1

Communication

Chi Zhang

czhang@cs.fiu.edu

COP 6611 Advanced Operating System

2

Outline
Layered Protocols

Remote Procedure Call (RPC)

Remote Object Invocation

Message-Oriented Communication

2

3

Layered Protocols

Each layer can be changed without the other ones being affected.

2-1

4

Client-Server TCP

a) Normal operation of TCP.
b) Transactional TCP.

2-4

3

5

Application Protocols

Application Protocols ≠ Applications

HyperText Transfer Protocol (HTTP)
HTML

Java RMI

XML / SOAP

Client-Server (Request-Reply)

Not blocked by firewall

6

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before the call to read

b) The stack while the called procedure is active

4

7

Client and Server Stubs

Principle of RPC between a client and server program.

8

Steps of a Remote Procedure Call
1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Net effect: RPC as if LPC (local)

5

9

Passing Value Parameters (1)

Which procedures call?
Machines have different data
representations.
Big Endians and Endian?
How to pass pointers?

Copy array into messages.
Input or Output?
Cannot handle lists

Interface Definition Languages (IDL)
A collection of procedures
Compiled into client or server stub.

10

Passing Value Parameters (2)

Steps involved in doing remote computation through RPC

2-8

6

11

Parameter Specification and Stub Generation

a) A procedure
b) The corresponding message.

12

Asynchronous RPC

a) The interconnection between client and server in a
traditional RPC

b) The interaction using asynchronous RPC

2-12

7

13

Distributed Objects

Common organization of a remote object with client-side proxy.

2-16

14

Binding a Client to an Object

a) (a) Example with implicit binding using only global references
b) (b) Example with explicit binding using global and local references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

8

15

Parameter Passing

The situation when passing an object by reference or by value.

2-18

16

Other Issues
Object Reference

network address + endpoint (TCP port) + object ID

remote registry

Static vs. Dynamic Invocation
fobject.append(int)

invoke(fobject, id(append), int)

Clone

Synchronization

A proxy can be serialized and sent to another
process, to be used as a reference.

9

17

Persistence and Synchronicity in Communication (1)

General organization of a communication system in which hosts are
connected through a network

2-20

18

Persistence and Synchronicity in Communication (2)

a) Persistent asynchronous communication
b) Persistent synchronous communication

2-22.1

10

19

Persistence and Synchronicity in Communication (3)

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

2-22.2

20

Persistence and Synchronicity in Communication (4)

e) Delivery-based transient synchronous communication at
message delivery

f) Response-based transient synchronous communication

11

21

Berkeley Sockets (1)

Socket primitives for TCP/IP.

Release the connectionClose

Receive some data over the connectionReceive

Send some data over the connectionSend

Actively attempt to establish a connectionConnect

Block caller until a connection request arrivesAccept

Announce willingness to accept connectionsListen

Attach a local address to a socketBind

Create a new communication endpointSocket

MeaningPrimitive

22

Berkeley Sockets (2)

Connection-oriented communication pattern using sockets.

12

23

The Message-Passing Interface (MPI)

Some of the most intuitive message-passing primitives of MPI
Message-oriented Transient Communication

Check if there is an incoming message, but do not blockMPI_irecv

Receive a message; block if there are noneMPI_recv

Pass reference to outgoing message, and wait until receipt startsMPI_issend

Pass reference to outgoing message, and continueMPI_isend

Send a message and wait for replyMPI_sendrecv

Send a message and wait until receipt startsMPI_ssend

Send a message and wait until copied to local or remote bufferMPI_send

Append outgoing message to a local send bufferMPI_bsend

MeaningPrimitive

24

Message-Queuing Model (1)

Persistent Asynchronous Communication: Intermediate-term storage for
messages, without requiring the sender or receiver always active

2-26

13

25

Message-Queuing Model (2)

Basic interface to a queue in a message-queuing system.

Install a handler to be called when a message is put into the specified
queue.Notify

Check a specified queue for messages, and remove the first. Never block.Poll

Block until the specified queue is nonempty, and remove the first messageGet

Append a message to a specified queuePut

MeaningPrimitive

26

General Architecture of a Message-Queuing System (1)

The relationship between queue-level addressing and network-level
addressing.

14

27

General Architecture of a Message-Queuing System (2)

The general organization of a message-queuing system with routers.

2-29

28

Message Brokers

The general organization of a message broker in a message-queuing

system.

2-30

15

29

Applications of Message-Queuing Systems

Applications with more complex requirements
than Emails

Guaranteed delivery
Priorities
Logging
Multicast
Load balancing
Fault tolerating
Transaction

E.g. Integrate a collection of database
applications

30

Example: IBM MQSeries

General organization of IBM's MQSeries message-queuing system.

2-31

16

31

Channels

Transfer along the channel can take place only if
both its sending and receiving MCA are running.

Configure the send queue to set off a trigger when a
message is enqueued.

The trigger starts the sending MCA

The sending MCA sends a control message
requesting the other MCA to be started.

A daemon listens to a well-known address

Channels are stopped automatically after a
specified idle time.

32

Message Transfer (1)

The general organization of an MQSeries queuing network using routing
tables and aliases.

17

33

Message Transfer (2)

Primitives available in an IBM MQSeries MQI

Get a message from a (local) queueMQget

Put a message into an opened queueMQput

Close a queueMQclose

Open a (possibly remote) queueMQopen

DescriptionPrimitive

