
1

Fault Tolerance

COP 6611 Advanced Operating System

Chi Zhang
czhang@cs.fiu.edu

2

Basic Concepts
Dependability Includes
• Availability

– Run time / total time

• Reliability
– The length of uninterrupted run time

• Safety
– When a system temporarily fails, nothing catastrophic

happens

• Maintainability
– repairable

2

3

Failure Models

Fault-tolerance: a system can provide its services even in the presence of
faults

Fail-stop (detectable), Fail-Silent, and Fail-Safe (recognizable junk)

Type of failure Description

Crash failure A server halts, but is working correctly until it halts (reboot!)

Omission failure
Receive omission
Send omission

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Timing failure (for real-time
performance)

A server's response lies outside the specified time interval

Response failure
Value failure
State transition failure

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Arbitrary failure A server may produce arbitrary responses at arbitrary times
(even malicious, intentional)

4

Failure Masking by Redundancy

Triple modular redundancy.

3

5

Process Resilience
What if a process fails? ⇒ A group of identical
process
When a message is sent to a group, all members
receive it.
Group management: join / leave.

Centralized / Distributed
Discover the crashed processes
Data Replication Management

Primary-based
Replicated-based

6

Flat Groups versus Hierarchical Groups

a) Communication in a flat group. No single point of failure.
b) Communication in a simple hierarchical group. Decision

making is less complicated

4

7

Agreement in Faulty Systems (1)

The Byzantine generals problem for 3 loyal generals and1 traitor.
a) The generals announce their troop strengths (in units of 1 kilosoldiers).
b) The vectors that each general assembles based on (a)
c) Every general passes his vector to every other general.
Finally, take the majority or mark UNKOWN.

Goal: non-faulty processes reach consensus in finite steps.
Unreliable Communication ⇒ No agreement between 2 processes

What if processes are faulty?

8

Agreement in Faulty Systems (2)

The same as in previous slide, except now
with 2 loyal generals and one traitor.

5

9

Reliable Client-Server Communication
TCP masks omission failures by ACKs and re-trans.
Distributed systems automatically setup a new connection
after a crash failure.
RPC might face five classes failures:

Unable to locate the server
The request message is lost. E.g. Server crashes before receiving
the request. Timeout ⇒ Retransmit.
The reply message is lost. ⇒ Message IDs. (whether request or
reply is lost?)
The server crashes after receiving the request

When a server crashes, it loses all states!
The client crashes after sending a request.

Kill the orphan process that wastes resources.
In a single computer, clients and servers crash simultaneously.

10

Server Crashes (1)

A server in client-server communication
a) Normal case
b) Crash during / after execution ⇒ no more execution!
c) Crash before execution ⇒ the client retransmit
How to distinguish (b) and (c)?
4 client-side strategies and 2 server-side strategies.
Semantics:
(i) At least once. (ii) At most once. (iii) No Guarantee.

6

11

Server Crashes (2)

client and server strategies in the presence of server crashes.
M: Send Reply Message; P: Print; C: Crash
OK: Print Once; DUP: Print more than once
ZERO: Not printed.

Client Server

Strategy P -> M

PMC PC(M)

DUP

OK

OK

DUP

DUP

OK

DUP

OK

C(MP)

OK

ZERO

ZERO

OK

Strategy M -> P

Reissue strategy MPC MC(P) C(PM)

Always DUP OK OK

Never OK ZERO ZERO

Only when ACKed DUP OK ZERO

Only when not ACKed OK ZERO OK

12

Basic Reliable-Multicasting Schemes

A simple solution to reliable multicasting
a) Message transmission. (Keep messages in buffer until each

receivers ack)
b) Reporting feedback
Not scalable: feedback explosion.
One solution: Negative ACKs only. But how long to keep the

message?

7

13

Nonhierarchical Feedback Control

Several receivers have scheduled a request for retransmission,
but the first retransmission request leads to the suppression
of others.

Receivers multicast their NACK to the rest of the group after
some random delay. (How to set the timer?)

Receiver might assist in local recovery.

14

Hierarchical Feedback Control

The essence of hierarchical reliable multicasting.
a) Each local coordinator forwards the message to its children.
b) A local coordinator handles retransmission requests.
Multicast routers can server as coordinators

8

15

Atomic Multicast
Messages are delivered to all processes or none.

Processes might crash.
A message is sent to all replicas just before one of
them crashes is either delivered to all non-faulty
processes, all none at all.

Non-trivial if the message is sent out by the crashed
process.

When the crashed process recovers and rejoins the
group, its state is brought up-to-date.

Totally-ordered

16

Virtual Synchrony (1)
Group view: a list of processes

Each message is associated with a group view.
Suppose message m is sent out with group view
G. Meanwhile a view change message vc is sent
simultaneously. Either

m is delivered to all non-faulty processes in G before
each one of them is delivered vc.

Not after, because m is associated with G.

m is not delivered at all.
Non-trivial if the sender of m crashes. (Virtual
Synchrony).

9

17

Virtual Synchrony (2)

The principle of virtual synchronous multicast.

18

Message Ordering (1)

Reliable unordered multicast: Three communicating
processes in the same group. The ordering of
events per process is shown along the vertical
axis.

Process P1 Process P2 Process P3

sends m1 receives m1 receives m2

sends m2 receives m2 receives m1

10

19

Message Ordering (2)

Four processes in the same group with two different
senders, and a possible delivery order of messages

under FIFO-ordered multicasting

Process P1 Process P2 Process P3 Process P4

sends m1 receives m1 receives m3 sends m3

sends m2 receives m3 receives m1 sends m4

receives m2 receives m2

receives m4 receives m4

20

Implementing Virtual Synchrony (1)
Use reliable point-to-point communication (TCP)
Messages sent by the same process are delivered
to another process in the same order.
A message is not delivered immediately after it is
received (unstable message).
Protocol (p. 392)

When a coordinator receives a view-change initiation,
it forwards a copy of all unstable messages in the
current view to all processes. It then multicasts a flush
message for the new group view.

11

21

Implementing Virtual Synchrony (2)

a) Process 4 notices that process 7 has crashed, sends a view change
b) Process 6 sends out all its unstable messages, followed by a flush message
c) Process 6 installs the new view when it has received a flush message from

everyone else

22

Two-Phase Commit (1)

2PC: Coordinator and Participants. Phase 1:
vote; Phase 2: Decision (p. 394).

• The finite state machine for the coordinator .
• The finite state machine for a participant.

12

23

Two-Phase Commit (2)
Crashed processes: States have been saved as logs.

P recovers to INIT ⇒ abort.
P recovers to READY ⇒ retransmit or waits (see the
next slide)
C recovers to WAIT ⇒ retransmit vote requests or abort
C recovers to COMMIT / ABORT ⇒ retransmit the
decision.

write commit / abort logs first and then multicast decision
messages
Why force write: what if C crashes after sending decisions to
some Ps and recovers to WAIT?

24

Two-Phase Commit (3)
Waiting processes: actions upon timeout?

P waits in INIT ⇒ abort.
C waits in WAIT ⇒ abort.
P in READY

Already voted yes, can't simply abort!
Other participants or C might vote no.
Wait until C recovers. (blocking 2PC)
P may contact another participant Q.

13

25

Two-Phase Commit (4)

Actions taken by a participant P when residing in state
READY and having contacted another participant Q.

State of Q Action by P

COMMIT Make transition to COMMIT

ABORT Make transition to ABORT

INIT Make transition to ABORT

READY Wait and contact another participant

26

Recovery
The recovery of general purpose processThe recovery of general purpose process

vs. 2PC for specific scenario (distributed database)vs. 2PC for specific scenario (distributed database)

The system’s state is periodically recorded (checkpoints)The system’s state is periodically recorded (checkpoints)
A costly operationA costly operation

Message loggingMessage logging
The receiver process logs a message before it is delivered.The receiver process logs a message before it is delivered.
Recover to the latest check point, and then replay the messagesRecover to the latest check point, and then replay the messages
delivered after awards.delivered after awards.
Assumption: messages are the only nonAssumption: messages are the only non--deterministic factors in deterministic factors in
the system.the system.
Not necessarily forced.Not necessarily forced.

Problem: Consistency among recovered processes.Problem: Consistency among recovered processes.
Messages must have been sent before it is received.Messages must have been sent before it is received.

14

27

Recovery Stable Storage

Write Two (always disk 1 first) and Read One
• Stable Storage
• Crash after drive 1 is updated (copy disk 1 to disk

2)
• Bad spot (copy from another disk)

28

Checkpointing

A consistent recovery line.

15

29

Independent Checkpointing

If processes take checkpoints independently, jointly
roll back to a consistent line. The domino effect:
In this case, the consistent recovery line is the
initial state

30

Coordinated Checkpointing
Independent Check Pointing

More checkpoints need to be maintained.
May recover to the initial state!

Complexity in computing the recovery line
Piggyback (i, m) into the messages, where i is the process
ID, and m is the number of the next checkpoint on process
Pi.
If Pi recovers to its checkpoint m-1, all other processes
must recover to a checkpoint before any messages with
tag (i, n) (n ≥m) is received.

Coordinate checkpoiting
Automatically consistent: distributed snapshot
algorithm.

16

31

Message Logging (1)

Incorrect replay of messages after recovery:
m1 is replayed by Q but m2 is not. R sees m3,

which is sent because Q reads m2.
R is an orphan process
The issue: some message logs must be written to the

stable storage (otherwise lost after recover)

32

Message Logging (2)
DEP(mDEP(m): the set of processes that are dependent on m.): the set of processes that are dependent on m.
COPY(mCOPY(m): the set of processes that have delivered m or): the set of processes that have delivered m or

have a copy of m but not yet in their stable storage.have a copy of m but not yet in their stable storage.
Process Q is an orphan if Q is in Process Q is an orphan if Q is in DEP(mDEP(m) while every) while every

process in process in COPY(mCOPY(m) has crashed.) has crashed.
i.e. Q is dependent on m, but there is no way to replay m.i.e. Q is dependent on m, but there is no way to replay m.

Avoid orphans: for each nonAvoid orphans: for each non--stable message m, there is at stable message m, there is at
most one process dependant on m.most one process dependant on m.

The receiver of m, say process P, is not allowed to send any The receiver of m, say process P, is not allowed to send any
messages after the delivery of m without first written m to messages after the delivery of m without first written m to
stable storage.stable storage.

