COP 6611 Advanced Operating System

Fault Tolerance

Chi Zhang
czhang@cs.fiu.edu

Basic Concepts

Dependability Includes
- Availability
— Run time/ total time
- Reliability
— Thelength of uninterrupted run time
o Safety
— When a system temporarily fails, nothing catastrophic
happens

* Maintainability
— repairable

Fallure Models

Type of failure

Description

Crash failure

A server halts, but is working correctly until it halts (reboot!)

Omission failure
Receive omission
Send omission

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Timing failure (for real-time
performance)

A server's response lies outside the specified time interval

Response failure
Value failure
State transition failure

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Arbitrary failure

A server may produce arbitrary responses at arbitrary times
(even malicious, intentional)

Fault-tolerance: a system can provide its services even in the presence of

faults

Fail-stop (detectable), Fail-Silent, and Fail-Safe (recognizableju3nk)

Failure Masking by Redundancy

(&

(8) ()
N4 v
(a)
/Voter
%/{ V1 W V4 (c1) V7
A2 V2 (B2 V5 (c2 V8
[(

V3 (B3] V6 (c3) Vg

(%3}

(b)

Triple modular redundancy.

Process Resilience

= What if aprocessfails? = A group of identical

process
= \When amessage is sent to agroup, all members

receiveit.
= Group management: join/ leave.

= Centralized / Distributed
= Discover the crashed processes
= Data Replication Management

* Primary-based

» Replicated-based

Flat Groups versus Hierarchical Groups

Flat) .
a\irmm Hlerarchlc:il group Coordinator
- (} " S e "\I‘
P PN
P A W AN \
Y) \ e ! \ -\I_-’ - v
()_—\() L ;'r \ [)e——— Worker
— '-\ P — Y N !
"\ \fz /)\" / / \
\ /NN /
VSN / -
{ |—|’.lr) i |)
Ay M
(a) (b)

a) Communication in aflat group. No single point of failure.

b) Communication in asimple hierarchical group. Decision

making is less complicated ®

Agreement in Faulty Systems (1)

Goal: non-faulty processes reach consensusin finite steps.
Unreliable Communication = No agreement between 2 processes
What if processes are faulty?

)~ ,‘()
] *‘\% K 4 #
244)/ [
1{ }x X \, 2 |
VSO 1 Got(1, 2, x, 4) 1 Got 2 Got 4 Got
LS T N v/ 2 Got(1,2, v, 4) 12v4) (12x4) (12 x4)
T A 3 Got(1,2,3,4) (a.b cd) (ef gh) (1.2 y4)
—— ¥4 4 Got(1,2,z 4) (1.2,z.4) (1,2.z4) (i) k1)
Fa\ulif\,-r process
(a) (b) (c)
The Byzantine generals problem for 3 loyal generals and1 traitor.
a) Thegenerals announce their troop strengths (in units of 1 kilosoldiers).
b) Thevectorsthat each general assembles based on (a)
c) Every general passes hisvector to every other general.
Finally, take the mgjority or mark UNKOWN. 7
()
1/,,,-/:‘ \\\ \
4NN
F 2 ad 1 Got(1,2,x) 1 Got 2 Got
ol ,,1\2) 2 Got(1,2,y) .2y) (1.2x)
Ty 3 Got(1,2,3) (a.b c) (def)
Faulty process
(a) (b) ()

The same asin previous dide, except now
with 2 loyal generals and one traitor.

Rel

lable Client-Server Communication

= TCP masks omission failures by ACKs and re-trans.

=D

istributed systems automatically setup a new connection

after a crash failure.

= R

PC might face five classes failures:
Unable to locate the server
The request messageislost. E.g. Server crashes before receiving
the request. Timeout = Retransmit.
The reply message islost. = Message | Ds. (whether request or
reply islost?)
The server crashes after receiving the request
= When a server crashes, it loses all states!

The client crashes after sending a request.
= Kill the orphan process that wastes resources.
= |n asingle computer, clients and servers crash simultaneoudly.

Server Crashes (1)

REQ Server REQ Server REQ Server
» Receive > Receive P Receive
Execute Execute
<F57 | Reply NoREP | NG REP |
(a) (b) (c)

A server in client-server communication

a) Normal case

b) Crash during / after execution = no more execution!
c) Crash before execution = the client retransmit

How to distinguish (b) and (c)?

4 client-side strategies and 2 server-side strategies.
Semantics:

() At least once. (ii) At most once. (iii) No Guarantee.

10

Server Crashes (2)

Client

Strategy M -> P

Server

Strategy P -> M

Reissue strategy MPC MC(P) C(MP) PMC PC(M) C(PM)
Always DUP OK OK DUP | DUP OK
Never OK ZERO | ZERO OK OK ZERO
Only when ACKed DUP OK ZERO DUP OK ZERO
Only when not ACKed OK ZERO OK OK DUP OK

client and server strategies in the presence of server crashes.

M: Send Reply Message; P: Print; C: Crash
OK: Print Once; DUP: Print more than once

ZERO: Not printed.

11

Basic Reliable-Multicastina Schemes

Receiver missed

message #24
_ Sender Ri _ Receiver 4 Receiver _Receiver
History M25
buffer 1y Last= 24 Last= 24 Last= 23 Last=24
] M25] M25] [m25] [m2s]
1 [[[* 1*
Network
(a)
Sender Ri R R
Last=25 Last= 24 Last=23 Last=24
o M25| 25| [m25] [m2s]
T n —| —| T
ACK 25
I ACK 25 I Missed 24 l S OACK 25[
Netwark

(k)

A simple solution to reliable multicasting

a)

b)

Message transmission. (Keep messages in buffer until each
receivers ack)
Reporting feedback

Not scalable: feedback explosion.

One solution: Negative ACKs only. But how long to keep the

message?

12

Nonhierarchica Feedback Control

Sender receives Receivers suppress their feedback
only one NACK
Sender Receiver Receiver Receiver Receiver
/—\ T=3 T=4 T=1 T=2
] | NACK | [NACK] | NACK | [NACK |
NACK
Network

Several recelvers have scheduled arequest Tor retransmission,
but the first retransmission request |eads to the suppression
of others.

Receivers multicast their NACK to the rest of the group after
some random delay. (How to set the timer?)

Receiver might assist in local recovery. 13

Hierarchical Feedback Control

-Sender
(Long-haul) connection

Coordinator rx|—] ’?rﬂ |_

\ - Local-area network
A

— P \ . /
._,.f [S B --‘.‘__C| . | | |"_’{_,,f
{ . Nr—
\ T I
Receiver - ‘?.-—_‘__.—""" '_ll 4 Root
ﬁ\ fl;ﬁ \?“.
— ()
7,
AN

The essence of hierarchical reliable multicasting.

a) Eachlocal coordinator forwards the message to its children.
b) A local coordinator handles retransmission requests.
Multicast routers can server as coordinators 14

Atomic Multicast

= Messages are delivered to all processes or none.
» Processes might crash.

= A messageis sent to all replicas just before one of
them crashesis either delivered to all non-faulty
processes, al none at all.

= Non-trivial if the message is sent out by the crashed
process.

= When the crashed process recovers and rejoins the
group, its state is brought up-to-date.

= Totally-ordered

15

Virtual Synchrony (1)

= Group view: alist of processes
= Each message is associated with agroup view.

= Suppose message m is sent out with group view
G. Meanwhile a view change message vc is sent
simultaneously. Either
= m isdelivered to al/ non-faulty processesin G before
each one of them is delivered vc.
= Not after, because m is associated with G.
= misnot delivered at all.

= Non-trivia if the sender of m crashes. (Virtual
Synchrony).

16

Virtual Synchrony (2)

Reliable multicast by multiple

P1 joins the group point-to-point messages P3 crashes P3 rejoins
. N s ;
N\ " / | /
p1 --4 - X - .
/* '_/'/ '-ll‘\."-__] /', ,4 ; _./ '
o J:'.‘/ '.I \ ‘ E /_/ ;l’ i /.
-y T] 7 T T 7 -
N\ A A A
N [N Ry !/ V4 Iy
= h . L S B A < o
T = rr 7 i —
1 &7 J./ I N
\ VAR TN i ™
P4 — 4 Y A : 14
*G = {P1,P2,P3,P4} /-'/ © G ={P1.P2,P4} ' G = {P1,P2,P3.,P4}

Partial Imulticasl Time —#

from P3 is discarded

The principle of virtual synchronous multicast.

17

Message Ordering (1)

Process P1 Process P2 Process P3
sends ml receives ml receives m2
sends m2 receives m2 receives ml

Reliable unordered multicast: Three communicating
processes in the same group. The ordering of
events per process is shown along the vertical
axis.

18

Message Ordering (2)

Process P1 Process P2 Process P3 Process P4
sends m1 receives ml receives m3 sends m3
sends m2 receives m3 receives ml sends m4
receives m2 receives m2
receives m4 receives m4

Four processes in the same group with two different
senders, and a possible delivery order of messages
under FIFO-ordered multicasting

19

Implementing Virtual Synchrony (1)

= Usereliable point-to-point communication (TCP)

= Messages sent by the same process are delivered
to another process in the same order.

= A message is not delivered immediately after itis
recelved (unstable message).

= Protocol (p. 392)

= \When a coordinator receives a view-change initiation,
it forwards a copy of all unstable messages in the
current view to all processes. It then multicasts a flush
message for the new group view.

20

Implementing Virtual Synchrony (2)

Unstable Flush message
- message - N
(1) (1 J N ()
P - -\: ‘ TN '| TN M N ,".‘ -\:
(: ‘_} _ /" S5 (2) (D (5) (2) al5)
€ Vlewchan e ".\;3D-~ - “"'~~-~§‘_\
&4)—9»{ &44—_;\5; (40— »56)
. D‘_D . K:D_. . . ’."_"_',7-;.‘_.
* N, - — = r _/a
P ¥ Y — N L
l\' o) "_ 32 < I\) o \3 .z'l L 0 / - \ 3_3"
o) o) Y 4 B
(@ (b) (©

a) Process4 notices that process 7 has crashed, sends aview change

b) Process 6 sends out all its unstable messages, followed by a flush message

c) Processé6 installs the new view when it has received a flush message from
everyone else 21

Two-Phase Commit (1)

Vote-request

T) Vote-abort__——{" it)
Commit = g “Vote-request
Vote—reques:t Vote- commlt
[war) |-’ (READY |
Vote-abort Vd . Vote-commit . Global- abort P < Global-commit
Global-abort / !Global -commit _ACK ‘/ "4 ACK
(ABORT | [commT) “»(ABORT) [commiT)
(a) (b}

2PC: Coordinator and Participants. Phase 1.
vote; Phase 2: Decision (p. 394).
* Thefinite state machine for the coordinator .

» Thefinite state machine for a participant.

22

Two-Phase Commit (2)

Crashed processes: States have been saved as logs.
= Precoversto INIT = abort.

= Precoversto READY = retransmit or waits (see the
next slide)

= Crecoversto WAIT = retransmit vote requests or abort
= Crecoversto COMMIT | ABORT = retransmit the
decision.
= write commit/ abort logs first and then multicast decision
messages
= Why force write: what if C crashes after sending decisionsto
some Ps and recoversto WAIT?

23

Two-Phase Commit (3)

Waiting processes. actions upon timeout?
= Pwaitsin INIT = abort.
= Cwaltsin WAIT = abort.
= PinREADY
= Already voted yes, can't smply abort!
= Other participants or C might vote no.
= Wait until C recovers. (blocking 2PC)
= P may contact another participant Q.

24

Two-Phase Commit (4)

State of Q Action by P
COMMIT Make transition to COMMIT
ABORT Make transition to ABORT
INIT Make transition to ABORT
READY Wait and contact another participant

Actions taken by a participant P when residing in state
READY and having contacted another participant Q.

25

Recovery

The recovery of general purpose process
= vs. 2PC for specific scenario (distributed database)

The system’ s state is periodically recorded (checkpoints)

= A costly operation
Message logging

= The receiver process logs a message before it is delivered.

= Recover to the latest check point, and then replay the messages

delivered after awards.

= Assumption: messages are the only non-deterministic factorsin

the system.

= Not necessarily forced.
Problem: Consistency among recovered processes.

= Messages must have been sent before it is received.

26

Recovery Stable Storage

Sector has
different value
4 el ‘.:‘\ e \.‘l 4 e B
A b e A */ b|c AUb| e N
[a~|d\ [a | d [a “d
h e) \ h 8) \ h e |
VEITAY 4 g f_‘_"/-/ gl
T -~ T e - Bad
A bl e N A bl e | ¢ a4 checksum
r.l'r a\\\\ d \ |"J a\\\ A \] / a\\\"\ﬁ
\h e) \ h/ TN / l\ h [~ e |
IR NIt Cale/
~— T ,_.I A D - - I
(a) (b} (c)

Write Two (always disk 1 first) and Read One
o Stable Storage
e Crash after drive 1 isupdated (copy disk 1 to disk
2)
« Bad spot (copy from another disk) 2

Checkpointing

Initial state Recovery line

¥
P1 1
l\

f et
DWW AN

Checkpoint

\ Failure
4]

-
) /s Time —»
Message sent Inconsistent cut
from P2 to P1

A consistent recovery line.

28

| ndependent Checkpointing

Initial state Checkpoint

P‘I/

WAV

Time —»

If processes take checkpoints independently, jointly
roll back to a consistent line. The domino effect:
In this case, the consistent recovery lineisthe
initial state

29

Coordinated Checkpointing

= |ndependent Check Pointing

= More checkpoints need to be maintained.
= May recover to theinitia state!

= Complexity in computing the recovery line

= Piggyback (i, m) into the messages, where i is the process
ID, and m isthe number of the next checkpoint on process
P.
= |f P, recoversto its checkpoint m-1, al other processes
must recover to a checkpoint before any messages with

tag (i, n) (n >m) isreceived.
= Coordinate checkpoiting

= Automatically consistent: distributed snapshot
algorithm.

30

Message Logging (1)

Q crashes and recovers

P
m J \ il m2 is never replayed,
| so neither will m3
Q" @& < I 4 .\ A
me m3 m2 / N, m3
R ¥4

—» Unlogged message Time —»
& —>» |ogged message

Incorrect replay of messages after recovery:

mlisreplayed by Q but m2isnot. R sees m3,
which is sent because Q reads m2.

R is an orphan process

The issue: some message logs must be written to the
stable storage (otherwise lost after recover) 31

Message Logging (2)

=*DEP(m): the set of processes that are dependent on m.
=*COPY (m): the set of processes that have delivered m or
have a copy of m but not yet in their stable storage.
»Process Q isan orphan if Q isin DEP(m) while every
process in COPY (m) has crashed.

= j.e. Qisdependent on m, but thereis no way to replay m.
=Avoid orphans: for each non-stable message m, thereis at
most one process dependant on m.

» Thereceiver of m, say process P, is not allowed to send any
messages after the delivery of m without first written m to
stable storage.

32

