
1

Distributed File Systems

COP 6611 Advanced Operating System

Chi Zhang
czhang@cs.fiu.edu

2

NFS Architecture (1)

a) The remote access model. (like NFS)
b) The upload/download model (like FTP)



2

3

NFS Architecture (2)

The basic NFS architecture for UNIX systems:
Hide differences between various file systems (e.g., local vs. 

remote)

4

File System Model

An incomplete list of file system operations supported by 
NFS.

Operation v3 v4 Description

Create Yes No Create a regular file

Create No Yes Create a nonregular file

Link Yes Yes Create a hard link to a file

Symlink Yes No Create a symbolic link to a file

Mkdir Yes No Create a subdirectory in a given directory

Mknod Yes No Create a special file

Rename Yes Yes Change the name of a file

Rmdir Yes No Remove an empty subdirectory from a directory

Open No Yes Open a file

Close No Yes Close a file

Lookup Yes Yes Look up a file by means of a file name

Readdir Yes Yes Read the entries in a directory

Readlink Yes Yes Read the path name stored in a symbolic link

Getattr Yes Yes Read the attribute values for a file

Setattr Yes Yes Set one or more attribute values for a file

Read Yes Yes Read the data contained in a file

Write Yes Yes Write data to a file



3

5

Communication: RPC

a) Reading data from a file in NFS version 3.
b) Reading data using a compound procedure in version 4. (If 

lookup fails, the succeeding open is not even attempted)

6

Stateful vs. Stateless Servers
NFS v3 is stateless
NSF v4 is stateful

Locking
Authentication
Strict cache consistency
Call back functions



4

7

File Handles
On a local file system, a file descriptor maps to an i-
node number.
In NFS, a file handle usually consists of dev number, i-
node number and i-node generation number (for i-node 
reuse, because of client caching)
64 bytes in v3 and 128 bytes in v4, only makes sense to 
the server.
Clients lookup the file handle for a given file name 
under a directory (given by its file handle), and cache 
the handle locally.
How to get the initial file handle? putrootfh

8

Naming (1)

Mounting (part of) a remote file system in NFS.
Clients A and B have different paths names for the same file on the 

server, unless the name space on clients is partly standardized 



5

9

Naming (2)

Mounting nested directories from multiple servers in NFS.
The client needs to explicitly mount the nested directory, since

there is no special file handle that includes the server ID.

10

File Locking in NFS

NFS version 4 operations related to file locking.
Lock operations can be non-blocking (clients have to poll) or 

blocking.
Locks are granted for a specific time ( in case a client crashes). 

The client needs to renew the lease.

Operation Description

Lock Creates a lock for a range of bytes

Lockt Test whether a conflicting lock has been granted

Locku Remove a lock from a range of bytes

Renew Renew the leas on a specified lock



6

11

Semantics of File Sharing (1)
a) On a single processor, when a 

read follows a write, the value 
returned by the read is the value 
just written.

b) In a distributed system with 
caching, obsolete values may be 
returned.

12

Semantics of File Sharing (2)

Four ways of dealing with the shared files in a distributed system.
Session semantics: propagating updates on cache immediately back to 

the server is inefficient. Just relax the semantics of file sharing in 
NFS. 

If two clients simultaneously cache and modify the file, the final result 
depends which one closes more recently.

Method Comment

UNIX semantics Every operation on a file is instantly visible to all processes

Session semantics
(NFS)

No changes are visible to other processes until the file is closed. 
Invalidate the local cache when the file is re-opened later.



7

13

Client Caching (1)

Client-side caching in NFS.
Read / Write to the local cache.

14

Client Caching (2)

Using the NFS v4 callback mechanism to recall file delegation.
The client machine can locally candle open/close operations from other 

clients on the same machine.
The (stateful) server can recall the delegation, for example, when another 

client on a different machine needs to access the file.



8

15

RPC Failures

Each RPC request from a client carries a unique transaction ID 
(XID). Three situations for handling retransmissions.

a) The request is still in progress
b) The reply has just been returned
c) The reply has been some time ago, but was lost.

16

File locking and Delegation 
in the Presence of Failures

A lease on every lock to solve client crashes.
After a server recovers from a crash, it enters a 
grace period, during which new locks are not 
granted, clients can reclaim locks granted before 
the crash.

The server rebuilds lock information.
If a client reclaims a file delegation after a server 
recovers from a crash, the server forces the client 
to flush all modifications back to the server, 
effectively recalling the delegation. 


