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Clock Synchronization Algorithms

Clock time, C dC oy

UTC, &

The relation between clock time and UTC when clocks ti 3ck at
different rates.

Cristian's Algorithm

Both Tyand Ty are measured with the same clock
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Getting the current time from atime server.
If one machineis synchronized with the standard time 4




The Berkeley Algorithm
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a)  Thetime daemon asks al the other machines for their clock values
b)  The machines answer
¢) Thetime daemon tells everyone how to adjust their clock 5

At-Most-Once Message Delivary
based on Synchronized Clock

Even in the face of crashes.
How long to maintain the state?
Every message carries a connection ID and atime stamp
(unique message ID).

» The same time stamp for retransmitted messages.
» Messages older than G (p.251) is removed.

» Younger than G?in the table.

» Table entries older than G are removed.
» Every AT, CurrentTime iswritten to disk. After
recovery, G=maX(tg,eq + AT, G)

= All states are lost.

= Before crash, rgjects messages with t.s. > G.latest =
CurrentTime + AT




Lamport Timestamps (1)
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a— b: ahappens before b. (transitive relation!), otherwise concurrent.

(1) within aprocess (ii) between process. Message passing

Lamport’s agorithm to assign C(a) and C(b) 7

Lamport Timestamps (2)
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a) Three processes, each with its own clock. The clocks run at
different rates.

b) Lamport's agorithm corrects the clocks.




Example: Totally-Ordered Multicasting
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update 2 update 1

Updating areplicated database and leaving it in an inconsistent state.
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Vector Time Stamps

For each processi:

= V,[i] is the number messages sent by P,

= Vilj]=k: P, “knows" k messages sent by P, (j#i)
When P, sendsamessager to P, V[i] ++l, and
attaches the vector timestamp to r
Messager is accepted by P, iff

= Vi()[i] = V|[i]+1

= vi(n[m] < Vj[m] (m#i)

Update V; after r is delivered.

» ahappens before b = vt(a) < vt(b)

» vi(a) < vt(b) = ahappens before b
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Global State (1)
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a) A consistent cut
b) Aninconsistent cut
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Global State (2)

Incoming Cutgoing

message Process State  message
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Organization of aprocess and channels for a distributed
snapshot
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Global State (3)
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b)  Process Q receives a marker for the first time and records its local

state

¢)  Qrecordsall incoming message
d)  Qreceivesamarker for itsincoming channel and finishes recording

the state of the incoming channel
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Election Algorithms

= Each process has a unique process number.

» The process with the highest number should be
elected as the coordinator

= Every process knows the process numbers of all
the other processes

= |t does not know whether they are currently up or

down.
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The Bully Algorithm (1)
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The bully election algorithm

. Process 4 holds an election

. Process 5 and 6 respond, telling 4 to stop
. Now 5 and 6 each hold an election
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The Bully Algorithm (2)
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d) Process6tells5to stop
€) Process 6 winsand tells everyone
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A Ring Algorithm
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Election algorithm using aring.
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Mutual Exclusion:
A Centralized Algorithm
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a)  Process 1 asksthe coordinator for permission to enter a critical region.
Permission is granted

b)  Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

¢)  When process 1 exits the critical region, it tells the coordinator, whigh
then repliesto 2




A Distributed Algorithm
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a)  Two processes want to enter the same critical region at the same
moment.

b)  Process 0 has the lowest timestamp, so it wins.

¢)  When process 0 isdone, it sendsan OK also, so 2 can now enter
the critical region. 190

A Toke Ring Algorithm
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a) Anunordered group of processes on a network.
b) A logical ring constructed in software.
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Comparison

Algorithm Messages per Delay before _entry Problems
entry/exit (in message times)
Centralized 3 2 Coordinator crash
Distributed 2(n-1) 2(n-1) Crash of any
process
Token ring ltow Oton-1 Lost token,
process crash

A comparison of three mutual exclusion algorithms.
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The Transaction Model (1)

Primitive Description
BEGIN_TRANSACTION Make the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Examples of primitives for transactions.
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The Transaction Model (2)

BEGIN_TRANSACTION BEGIN_TRANSACTION

reserve WP -> JFK; reserve WP -> JFK;

reserve JFK -> Nairobi; reserve JFK -> Nairobi;

reserve Nairobi -> Malindi; reserve Nairobi -> Malindi full =>
END_TRANSACTION ABORT_TRANSACTION

(@ (b)

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable
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The Transaction Model (3)
ACID

Atomic

= Operations in the transaction happens indivisibly

Consistent

» E.g. the law of conservation of money

|solated (Seridlizable)

= Concurrent transactions appear as if one after
another.

Durable

= Once commits, the data are there forever o
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Subbransastion Sublransaction

|

Distributed Transactions

Mesied fransactan Dislribubad Eransssclion

_ ] ] U]

__|‘r 4

Airl '|E-'Ja1-aba-s-e I--:Ih:-l dl‘..‘.-ﬂ:-:l.'.-e « - Tk
Chslribuled dalabase
Two different (independent) Tewa physicaly separabed
databases parts al the aame databasa
LAl =]

a) A nested transaction
b) A distributed transaction

Subtrarsachon Subtrardsachon
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a) Thefileindex and disk blocks for athree-block file
b)  Thesituation after a transaction has modified block 0 and
appended block 3
c)  After committing »
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Writeahead Log

x=0; Log Log Log
y=0;
BEGIN_TRANSACTION;
X=x+1; [x=0/1] [x=0/1] [x=0/1]
y=y+2 [y =0/2] [y =0/2]
X=y*y; [x=1/4]
END_TRANSACTION,;
@) (b) (c) (d)
a) A transaction

b) —d) The log before each statement is executed
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Concurrency Control (1)

Transactions

1¥ F
READMRITE [ Transaction | BEGIN_TRANSACTION
A nager EMD TRANS&CTICHM
v Y
LOCK/RELEASE
Scheduler or
Timestamp operatons
Yy A
Data Execute readiwrite
mEnager

General organization of managers for handling transactigns.




Concurrency Control (2)

Genera organization of
A, managers for handling
Tranaaclion distributed transactions.
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Seriaizability

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION

x=0; x=0; x=0;
X=x+1, X=X+2; X=X+3;
END_TRANSACTION END_TRANSACTION END_TRANSACTION

(@) (b) (©)
Schedulel |[x=0; x=x+1; x=0; x=x+2; x=0; xX=x+3 Legal
Schedule2 |[x=0; x=0; x=Xx+1; Xx=x+2; x=0; Xx=x+3; Legal
Schedule3 | x=0; x=0; x=x+1; x=0; x=x+2; X=x+3; lllegal

Q)

a) —c) Threetransactions T, T,, and T,

d) Possible schedules

Read/write conflict; write/write conflict

Pessimistic approaches; Optimistic approaches  ®
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Two-Phase Locking (1)

= Reguest the lock before accessing the data

» Delay the request if already used by another
process

» Release the lock if no longer used

= Never grant alock to aprocessif it has released
another lock.

= Deadlock may occur
» Request locksin order
= Detect and kill
= Timeout and release

31

Two-Phase Locking (2)
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Two-phase locking.
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Two-Phase Locking (3)
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Strict two-phase locking.
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Pessimistic Timestamp Ordering (1)
= Assign each transaction T a unigue timestamp
ts(T). when it starts
» Serialized asif T commits at ts(T)

» Every datax has atsyp(Xx) and ats,g(X)

» Tentativet.s., becomes permanent after the
transaction commits

= For read(T, X) request

= Abort if tS(T) < ts,r(X)

= |f ts,r(X) tentative, wait until it commits
= For write(T, X) request

= Abort if tS(T) < ts,r(X) or t5(T) < tsyp(X)
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Pessimistic Timestamp Ordering (2)
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Concurrency control using timestamps.
Abort rather than wait if requests conflict =Deadlock ffee!

Optimistic Timestamp Ordering

= Check conflicts at the end of the transaction

» Check private work space

= |f S0, abort

= Allows maximum parallelism if no conflict
= With heavy load and frequent conflicts, a bad

choice.
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