COP 6611 Advanced Operating System

Synchronization

Chi Zhang
czhang@cs.fiu.edu

Outline

Physical Clock Synchronization
Logical Clocks

Global State

Election Algorithms

Mutual Exclusion

Distributed Transactions

Clock Synchronization Algorithms

Clock time, C dC oy

UTC, &

The relation between clock time and UTC when clocks ti 3ck at
different rates.

Cristian's Algorithm

Both Tyand Ty are measured with the same clock
Ig p

Client i

|'!il\.“!l2|l.ln.‘.'.‘-1 E:un:

v

TIFrE S
. Tirme b]
|, Interrupt handling trme

Getting the current time from atime server.
If one machineis synchronized with the standard time 4

The Berkeley Algorithm

5:00 0 200 L
"‘ S0 8] ! A +5
'y w ol
- & |k -
300 10 > - +16
| 200 | +25 | 20
1 =haark r 1 r-
F, i T = T E 4
1 e s
250 325 250 325 050 . £
(a) [{&]] [{4]

a) Thetime daemon asks al the other machines for their clock values
b) The machines answer
¢) Thetime daemon tells everyone how to adjust their clock 5

At-Most-Once Message Delivary
based on Synchronized Clock

Even in the face of crashes.
How long to maintain the state?
Every message carries a connection ID and atime stamp
(unique message ID).

» The same time stamp for retransmitted messages.
» Messages older than G (p.251) is removed.

» Younger than G?in the table.

» Table entries older than G are removed.
» Every AT, CurrentTime iswritten to disk. After
recovery, G=maX(tg,eq + AT, G)

= All states are lost.

= Before crash, rgjects messages with t.s. > G.latest =
CurrentTime + AT

Lamport Timestamps (1)

E 77777777777777 0 [o] [o] 0
I 10 el A B 0
16| 12| P "
| 24 s 24|
32| sl 22|
| 40) E 20|

48 36 48

56 42 61

69

64 48

7

70

80 fLoo| 76 85 [L00

(@ (b)
a— b: ahappens before b. (transitive relation!), otherwise concurrent.

(1) within aprocess (ii) between process. Message passing

Lamport’s agorithm to assign C(a) and C(b) 7

Lamport Timestamps (2)

! Update 1 Update 2
r . 1¥
- ‘F
.pr._are 1is Replicated database Upc;le s
perfarmed befora perfommed before
upsdate 2 update 1

a) Three processes, each with its own clock. The clocks run at
different rates.

b) Lamport's agorithm corrects the clocks.

Example: Totally-Ordered Multicasting

.. Update 1 Update 2~
—— e
- L
.JFH‘E‘ . Replicated databease U:-d; ™
perfarmed befors perfarrmed befors

update 2 update 1

Updating areplicated database and leaving it in an inconsistent state.

9

Vector Time Stamps

For each processi:

= V,[i] is the number messages sent by P,

= Vilj]=k: P, “knows" k messages sent by P, (j#i)
When P, sendsamessager to P, V[i] ++l, and
attaches the vector timestamp to r
Messager is accepted by P, iff

= Vi()[i] = V|[i]+1

= vi(n[m] < Vj[m] (m#i)

Update V; after r is delivered.

» ahappens before b = vt(a) < vt(b)

» vi(a) < vt(b) = ahappens before b

10

Global State (1)

Consstent ouwt Incivsgtant &l
Time — M Time —e
— . [— .
mi " md mi 3 m
1 R 1
m2 ma
1 s 1

Sercked ol m2 cannd
D centied with s out

EE (1]}

a) A consistent cut
b) Aninconsistent cut

11

Global State (2)

Incoming Cutgoing

message Process State message

4 = -

LU - >
Local

Marker (il filesystem

)

Organization of aprocess and channels for a distributed
snapshot

12

Global State (3)

[T > -
b = 0 W - - dle= @ - > 0O -
- —~ = -
— — allb — allk <) d
Hesoondesd

B [£H]

b) Process Q receives a marker for the first time and records its local

state

¢) Qrecordsall incoming message
d) Qreceivesamarker for itsincoming channel and finishes recording

the state of the incoming channel
13

Election Algorithms

= Each process has a unique process number.

» The process with the highest number should be
elected as the coordinator

= Every process knows the process numbers of all
the other processes

= |t does not know whether they are currently up or

down.

14

4

3

%

The Bully Algorithm (1)

1 1 1

) =] 2 , 5 2
p ¥ o
Ly
o " &
Eluction o "0 - oy in F £
o
.%j '_‘:.\::F
. 3 o 3 o p-* .
¥ A e
Pravious coardinator
Fuack Crashad

(&) [il

The bully election algorithm

. Process 4 holds an election

. Process 5 and 6 respond, telling 4 to stop
. Now 5 and 6 each hold an election

15

The Bully Algorithm (2)

1 1
2 5 2. ¥ s
® ok >
4 & 4 Laordinator
£ r
0 3 i} 3
T i

(d) (=)

d) Process6tells5to stop
€) Process 6 winsand tells everyone

16

A Ring Algorithm

(5,800 1
L 4
. Election messacns
Q0) -
; F e
5 2
; 1
Previous coondinator
has crashed . [=.8] 3
~
[2.3]
| 4
Mo response | & . 4
(s 3

Election algorithm using aring.

17

Mutual Exclusion:
A Centralized Algorithm

0) 1 2 0 1 2 0 1 2
A Request Ral |
g s} Ok e | Blaase
¥ ¥ ho reply L
Q * Iz -
uaueE is
« ampty

Coardinatar
(2} (&} ()

a) Process 1 asksthe coordinator for permission to enter a critical region.
Permission is granted

b) Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

¢) When process 1 exits the critical region, it tells the coordinator, whigh
then repliesto 2

A Distributed Algorithm

Enters
cnbical
8 fagicn
| 4
0 0 1]
B ¥ 4z ok ¥ o oK
94 A Enters
e 1 — 7 1 2 | oritical
12 . QK g e
12
[al (k)

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.

¢) When process 0 isdone, it sendsan OK also, so 2 can now enter
the critical region. 190

A Toke Ring Algorithm

r?'.'
1 k]
k|
1 k. |
Sl AriwllFILY sl 813 0 4
N !
|
T 5
e
[al ik

a) Anunordered group of processes on a network.
b) A logical ring constructed in software.

20

10

Comparison

Algorithm Messages per Delay before _entry Problems
entry/exit (in message times)
Centralized 3 2 Coordinator crash
Distributed 2(n-1) 2(n-1) Crash of any
process
Token ring ltow Oton-1 Lost token,
process crash

A comparison of three mutual exclusion algorithms.

21

The Transaction Model (1)

Primitive Description
BEGIN_TRANSACTION Make the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Examples of primitives for transactions.

22

11

The Transaction Model (2)

BEGIN_TRANSACTION BEGIN_TRANSACTION

reserve WP -> JFK; reserve WP -> JFK;

reserve JFK -> Nairobi; reserve JFK -> Nairobi;

reserve Nairobi -> Malindi; reserve Nairobi -> Malindi full =>
END_TRANSACTION ABORT_TRANSACTION

(@ (b)

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

23

The Transaction Model (3)
ACID

Atomic

= Operations in the transaction happens indivisibly

Consistent

» E.g. the law of conservation of money

|solated (Seridlizable)

= Concurrent transactions appear as if one after
another.

Durable

= Once commits, the data are there forever o

12

Subbransastion Sublransaction

|

Distributed Transactions

Mesied fransactan Dislribubad Eransssclion

_]] U]

__|‘r 4

Airl '|E-'Ja1-aba-s-e I--:Ih:-l dl‘..‘.-ﬂ:-:l.'.-e « - Tk
Chslribuled dalabase
Two different (independent) Tewa physicaly separabed
databases parts al the aame databasa
LAl =]

a) A nested transaction
b) A distributed transaction

Subtrarsachon Subtrardsachon

25
Private Workspace
Frrialm
N e
Ciigpni .
Inshesx] w3 n
[a af 1 K
’ 1 1z 2
: 12
TEo| oo |F
0o o 0 5
F & 'y
Fres hiocam
(1] iLbj i
a) Thefileindex and disk blocks for athree-block file
b) Thesituation after a transaction has modified block 0 and
appended block 3
c) After committing »

13

Writeahead Log

x=0; Log Log Log
y=0;
BEGIN_TRANSACTION;
X=x+1; [x=0/1] [x=0/1] [x=0/1]
y=y+2 [y =0/2] [y =0/2]
X=y*y; [x=1/4]
END_TRANSACTION,;
@) (b) (c) (d)
a) A transaction

b) —d) The log before each statement is executed

27

Concurrency Control (1)

Transactions

1¥ F
READMRITE [Transaction | BEGIN_TRANSACTION
A nager EMD TRANS&CTICHM
v Y
LOCK/RELEASE
Scheduler or
Timestamp operatons
Yy A
Data Execute readiwrite
mEnager

General organization of managers for handling transactigns.

Concurrency Control (2)

Genera organization of
A, managers for handling
Tranaaclion distributed transactions.
I'I.'Irl.--_*‘-"
.
¥ il .
Sctamdular SoFsiaduilar S i b
i TrY ¥ i T ™ i
¥ kg h ¥ A ok ¥
data Lata =]
manager TTRATeR T manager
Moo A Machr: = Machine T

29

Seriaizability

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION

x=0; x=0; x=0;
X=x+1, X=X+2; X=X+3;
END_TRANSACTION END_TRANSACTION END_TRANSACTION

(@) (b) (©)
Schedulel |[x=0; x=x+1; x=0; x=x+2; x=0; xX=x+3 Legal
Schedule2 |[x=0; x=0; x=Xx+1; Xx=x+2; x=0; Xx=x+3; Legal
Schedule3 | x=0; x=0; x=x+1; x=0; x=x+2; X=x+3; lllegal

Q)

a) —c) Threetransactions T, T,, and T,

d) Possible schedules

Read/write conflict; write/write conflict

Pessimistic approaches; Optimistic approaches ®

15

Two-Phase Locking (1)

= Reguest the lock before accessing the data

» Delay the request if already used by another
process

» Release the lock if no longer used

= Never grant alock to aprocessif it has released
another lock.

= Deadlock may occur
» Request locksin order
= Detect and kill
= Timeout and release

31

Two-Phase Locking (2)

Lk padim

Gigveing phase Shrinkng phase

A

= L

Hurnbesr af kkdks

Timu >

Two-phase locking.

32

16

Two-Phase Locking (3)

Liock point

Growang phass g Shrinking phase -

A

Al Iozks ane rebeased
at the same fima

Murnier of locks

' N

['ime -

Strict two-phase locking.
33

Pessimistic Timestamp Ordering (1)
= Assign each transaction T a unigue timestamp
ts(T). when it starts
» Serialized asif T commits at ts(T)

» Every datax has atsyp(Xx) and ats,g(X)

» Tentativet.s., becomes permanent after the
transaction commits

= For read(T, X) request

= Abort if tS(T) < ts,r(X)

= |f ts,r(X) tentative, wait until it commits
= For write(T, X) request

= Abort if tS(T) < ts,r(X) or t5(T) < tsyp(X)

17

Pessimistic Timestamp Ordering (2)

Epplh 1Bglxl T

LA F1 LTyl T2l
(a}

Bl TEggle) =T

i) A Ta)
|21}
Es{Ta)
AF
Lt}
5Tz
{Tal
[

Tema &
Fepgltl

] [NEY

Tims =
I:",..::-:I

(Tad

T i

D

« berlatree

Wl

Abort

1ol

[£1]

ESyed @)

(]

il

al]

Concurrency control using timestamps.
Abort rather than wait if requests conflict =Deadlock ffee!

Optimistic Timestamp Ordering

= Check conflicts at the end of the transaction

» Check private work space

= |f S0, abort

= Allows maximum parallelism if no conflict
= With heavy load and frequent conflicts, a bad

choice.

36

18

