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Abstract. This paper presents an innovative, adaptive variant of Kohonen’s self-
organizing maps called ASOM, which is an unsupervised clustering method that 
adaptively decides on the best architecture for the self-organizing map. Like the 
traditional SOMs, this clustering technique also provides useful information about 
the relationship between the resulting clusters. Applications of the resulting software 
to clustering biological data are discussed in detail.  

1. Introduction 

In today’s data-driven world, it has become increasingly important to analyze large 
amounts of data in order to extract information from it. Such data analysis is now an 
integral part of genomic and proteomic studies. Data analysis methods can be either 
exploratory or confirmatory, based on the availability of appropriate models for the data 
source. Cluster analysis, a dominant technique of exploratory data analysis [1], aims to 
group a collection of objects into subsets or “clusters”, such that those within each cluster 
are more closely related to one another than objects assigned to different clusters [2].  

Data clustering schemes can be described in terms of the following three steps: (1) 
feature selection or extraction, (2) similarity (or dissimilarity) computation, and (3) 
clustering. Clustering methods can be broadly classified as hierarchical or partitioning. 
Strategies for hierarchical clustering divide into two basic paradigms: agglomerative 
(bottom-up) and divisive (top-down) [2]. Typical partition clustering algorithms include: 
K-means clustering, and Self-Organizing Maps (SOM). K-means is an iterative descent 
clustering algorithm [3], while the SOM can be viewed as a constrained version of K-
means clustering or a neural network [4, 5]. SOMs have the advantage that it is possible to 
easily display the output as a two dimensional grid of samples.  
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The main drawback of the existing algorithms is that they require either specifying the 
number of clusters in advance (K-means clustering and SOM), or leave the decision of the 
number of clusters to the user (hierarchical clustering). To address this shortcomings of 
fixing a priori the number of clusters, Pelleg and Moore proposed a new algorithm called 
X-means [6], a modification of the traditional K-means algorithm. Instead of specifying 
the number of clusters in advance, X-means only requires a range of the number of 
clusters, and then searches the space of cluster locations and the number of clusters using 
the Bayesian Information Criterion (BIC) measure.  

In this paper, we propose a new clustering algorithm: Adaptive Self-Organizing Maps 
(ASOM), which corresponds to SOMs in the same way that X-means does to K-means. 
The architecture of the SOM is adaptively modified using a variant of the BIC measure. 
ASOM only requires a range of architectures to be specified in advance. Our results 
showed that ASOM is an efficient and reliable tool for cluster analysis of biological data. 
It turns out to be much more stable than X-means, and as with SOMs, also reveals 
potential neighborhood relationships among the resulting clusters. 

It is well known that it is difficult to ascertain the validity of inferences drawn from the 
output of these clustering applications. We discuss simple tools that efficiently display 
information about significant clusters. 

1.1. CONCEPTS AND DEFINITIONS 

Samples (or patterns) for clustering are represented as a vector of d measurements or 
features, i.e., as a point in d-dimensional space: x = (x , . . . x ). A cluster is simply a set of 
samples. The centroid of a cluster is denoted by µ, and is obtained by doing the 
coordinate-wise averaging of the points in the cluster. Let N denote the number of 
clusters. A distance measure or a similarity measure is a metric on the feature space used 
to quantify the similarity

1 d

 of the samples. Any set of n samples can be viewed as an n × d 
matrix. Thus the input to a cluster analysis is an ordered pair (D, s), where D is the matrix 
of samples and s is the similarity measure. The output from the clustering algorithm is a 
partition , where the clusters G , k = 1, …, N, are subsets of D, such that 

 and 
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1.2. Similarity Measures 

A measure of similarity between samples is fundamental to the definition of a cluster, and 
the quality of clustering depends on its choice. The most popular metric for continuous 
feature spaces is the Minkowski metrics, defined as follows:  
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When p = 2, this is the Euclidean distance metric. Other popular similarity measures 
include: Pearson Correlation Coefficient, Rho, Dice, Jaccard, Simpson, and others. 

1.3. Evaluating Clusters 

Fig. 1. Input can be partitioned into 3 or 4 clusters

 Clustering is considered difficult because data can reveal clusters with different shapes 
and sizes in a d-dimensional feature space. To compound the problem further, the number 
of clusters in the data often depends on the resolution (fine vs. coarse) with which we 
view the data. The examples in Figures 1(a) and (b) show that it is possible to get two 
different sets of clusters depending on whether one wants 3 clusters or 4. Both sets of 

clusters appear to be equally reasonable, 
making it necessary to evaluate clustering 
results objectively and quantitatively [7]. 
If, for the given data set, a priori grouping 
information is available, then entropy can 
be used to evaluate the clustering results. 
However, its chief limitation is that it can 
only be used to compare clusters with the 
same architecture (i.e., same number of 
clusters). 

In practice, we may not have a priori 
grouping information. In such cases, the Bayesian Information Criterion (BIC) measure 
can be used to compare the clustering results [8]. The BIC measure is based on the 
maximization of a log-likelihood score [2]. For X-means and the proposed algorithm, 
ASOM, the BIC measure is also used as the criterion for model selection. For a given 
model M, the BIC measure is given by BIC(M) = l(D) – P / 2·(log R), where l is the log-
likelihood of the data according to model M taken at the maximum likelihood point, and P 
is the effective number of parameters. Further details may be found in Pelleg and Moore 
[6]. For finite samples, BIC often chooses simple models to avoid placing heavy penalty 
on complexity. As the size of samples increases, the probability that the BIC measure 
favors the correct model also increases [2]. 

2. Adaptive Self-Organizing Maps (ASOM) 

One of the shortcomings of SOM algorithm is its fixed network architecture [9]. For a 
large dataset, it is very difficult to guess the right architecture. This has motivated the 
development of a number of adaptive variants.  

Growing Grid introduces the notion of a resource [10]. This is associated with each 
unit and used to gather statistical information, which is then used in each adaptation step, 
to decide where in the map a new row or column is to be inserted. Performance of the 
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Growing Grid is superior to conventional SOM [11]. Since its parameters are constant, the 
user does not need to choose a “cooling schedule”, as in the conventional SOM. However, 
when the map grows larger, the algorithm is likely to split more than necessary. 

The Growing Hierarchical Self-Organizing Map (GH-SOM) [9] uses a hierarchical 
structure with multiple layers, where each layer consists of a number of independent 
SOMs. Every cell in an SOM from one layer may be added to the next layer of the 
hierarchy. The adaptation steps are similar to that of Growing Grid, with the difference 
that it uses a decreasing learning rate and a decreasing neighborhood radius. The mean 
quantization error (MQE) of the map is used to decide if a new level of the hierarchy is to 
be created. Due to its hierarchical structure, GH-SOM shows a lot of structural detail. But 
the parameters remain hard to choose.  

2.1. Algorithm Adaptive Self-Organizing Map (ASOM) 

Given lower and upper bounds on the number of columns and rows (colmin, rowmin, colmax, 
and rowmax, respectively), ASOM starts with the smallest architecture. The steps in each 
iteration are described below. 

1. Run SOM algorithm on current architecture: colcurr × rowcurr.  
2. Split each “parent” column (and row), and run SOM of architecture 2 × rowcurr 

on only the data belonging to the parent. Select the architecture that improves the 
BIC score by the largest amount.  

3. If maximum of rows or columns are exceeded, then stop and report the best 
scoring model during the search.  

4. Else update colcurr and rowcurr. Go to step 1.   
In the splitting step, the algorithm 

decides how to update the architecture and 
the cluster centers. The algorithm 
considers every column separately and 
checks the value of splitting it into two 
columns. The rows are also considered in 
a similar fashion. The architecture with the 
highest BIC score is then chosen for the 
next iteration. The algorithm continues 
until the upper bound on the number of 
rows or columns is reached. The map with 
the highest BIC score is finally reported.  

Figure 3 shows the location of the 
cluster centers as the ASOM algorithm 
progresses for a specific chosen 
architecture. The initial cluster centers are 
selected at random, and the structure of the 
network becomes visible after several 

Fig. 2. An example of 2×3 grid being updated to a 
2×4 grid. The upper part shows a set of points 
partitioned into 6 clusters organized into a 2×3 
grid. The last column is further partitioned as 
shown in the lower figure to obtained a 2×4 grid 
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iterations. As the algorithm progresses, the cluster centers spread out to make meaningful 
clusters. Figure 4 shows the optimal clustering obtained for each chosen grid architecture. 
In this example, the best architecture was a 5×5 grid, which had the largest BIC value 
among the architectures investigated for that data set. 

 

 
Fig. 3. The positions of the cluster centers (or prototypes) during the execution of the ASOM 
algorithm for a specific architecture (5×5 grid architecture). More details in [15] 
 

 
5 × 4 BIC: 513.26 

 
5 × 5 BIC: 795.98 

 
5 × 8 BIC: 475.05  

Fig. 4. Experiments with data consisting of points in two-dimensional space are shown above. The 
maximum number of rows and columns were set to 8. The reference vectors are shown as large 
black dots, and the neighboring cluster centers are connected by an edge. The numbers at lower 
right-hand corner indicate the architecture and corresponding BIC score. More details in [15] 

3. Experiments And Results 

Four clustering algorithms, K-means, X-means, SOM, and ASOM, were implemented in 
Java. In order to visualize the whole process, a visualization package was also 
implemented using Java Swing.  

3.1. Rat Central Nervous System (CNS) Dataset 

The rat CNS data set, from Wen et al., contains the expression levels of 112 genes during 
rat central nervous system development over nine time points [12]. As suggested by Wen 
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et al., the raw data set was normalized by the maximum expression level of each gene, 
and then augmented with slopes (differences between consecutive time points) to take into 
account offset but parallel patterns. The dataset is a matrix with 112 genes and 17 

conditions after the above preprocessing.  

F
o
m

The dataset was provided as input to 
the ASOM software. The best BIC 
measure for this set of data was obtained 
with the 2×3 grid architecture. Each grid 
has one non-empty cluster, and thus the 
data set was clustered into six clusters, 
Wave 1, Wave 2, Wave 3, Wave 4, 
Constant, and Other [12]. Three other 
clustering methods in our software were 
also tested with the following parameter 
settings: 6 for the number of clusters in K-
means and 2×3 for grid architecture in 
SOM. In order to further compare 
clustering results, mean normalized 
expression levels of all gene clusters were 
plotted. The mean expression plot for one 
gene cluster (wave 3) is shown in Figure 5 
(Plots of all six clusters provided in 
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ig. 5. Mean normalized gene expression levels 
f gene clusters generated by ASOM, SOM, K-
eans, X-Means 
upplemental website [15]). Average profiles from the four approaches look very similar 
cross all the six clusters. The clusters capture majority significant genes when compared 
ith results in Wen et al..

.2. Yeast Cell Cycle Dataset 

he ASOM algorithm was also tested on the yeast cell cycle data of Spellman et al [13]. 
 total of 799 genes were identified as being regulated by cell cycle, and were used as 

nput. To assess the classification capability of the ASOM clusters, gene ontology 
nformation was used to evaluate whether the clusters have significant enrichment of one 
r more function groups (below ontology level 2); this was done using GoMiner [14]. 
able 1 shows details of 5 typical clusters with enriched functional groups. For example, 
luster 1, with 42 genes, was enriched by DNA and nucleic-acid binding genes. Enriched 
unction groups included helicase activity, cytokinesis, transferase activity, transcription 
egulator activity and others, suggesting that the ASOM clusters are biologically 
eaningful (Details of all 8 clusters provided in supplemental website [15]). 
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Table 1: Enrichment of ASOM clusters by GO function category. 

Cluster # of Genes Enriched functional category 
(total genes) Clustered genes -log10 

(p-value) 

1 42 nucleic acid binding (37) 
DNA binding (27) 

16 
15 

12 
15 

2 130 cell proliferation (77) 
cell cycle (66) 

34 
33 

9 
10 

3 20 cell proliferation (77) 
cytokinesis (14) 

10 
6 

5 
6 

4 53 helicase activity (17) 
DNA helicase activity (16) 

11 
8 

9 
5 

5 26 amino acid metabolism (26) 10 9 

 

3.3. Experiments with Synthetic Data  

Random data sets were generated with coordinates from the Gaussian distribution. Two 
types of data sets were generated. The first one consisted of random point sets where the 
cluster centers were organized into a pre-specified number of rows and columns. An 
example of such a data set was shown in Figure 4. The second one consisted of randomly 
generated point sets where the cluster centers were manually provided by a user. The 
results showed that the ASOM algorithm was extremely successful in identifying the 
clusters that were present in the clustered synthetic data that was generated. 

4. Discussion 

We have developed a new, adaptive variant of Kohonen’s self-organizing maps. We apply 
it to two different gene expression datasets.  The proposed adaptive SOM permits the 
detection of the best architecture for the self-organizing map effectively. The software 
package provides effective visualization tools to facilitate the analysis. The software is 
available from the authors upon request. 
Supplemental Website: http://biorg.cs.fiu.edu/ASOM 
Acknowledgements: Research of GN was supported by NIH Grant P01 DA15027-01.  
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