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ABSTRACT 

      Understanding gene regulation is a key step to 

investigating gene functions and their relation-

ships. Many algorithms have been developed to 

discover transcription factor binding sites 

(TFBS); they are predominantly located in up-

stream regions of genes and contribute to tran-

scription regulation if they are bound by a spe-

cific transcription factor.  However, traditional 

methods focusing on finding motifs have short-

comings, which can be overcome by using com-

parative genomics data that is now increasingly 

available. Traditional methods to score motifs 

also have their limitations. In this paper, we pro-

pose a new algorithm called IEM to refine motifs 

using comparative genomics data. We show the 

effectiveness of our techniques with several data 

sets. Two sets of experiments were performed with 

comparative genomics data on five strains of P. 

aeruginosa. One set of experiments were per-

formed with similar data on four species of yeast. 

The weighted conservation score proposed in this 

paper is an improvement over existing motif 

scores.  

 

Keyword: Comparative Genomics, Motif, EM 

algorithm 
 

1 INTRODUCTION  

Gene expression is a fundamental biological proc-

ess. The first step in this process called transcrip-

tion transmits genetic information from DNA to 

messenger RNA (mRNA). A transcription factor 

(TF) is a protein that regulates transcription of a 

gene by interacting with specific short DNA se-
  
* To whom correspondence should be addressed.  

quences, located often in the upstream region of 

the regulated genes. Such short DNA sequences 

are called transcription factor binding sites 

(TFBS) or regulatory elements. The regulatory 

elements can be described as sequence signatures 

and will be referred to in this paper as motifs. One 

TF can regulate a large set of genes, and a single 

gene may be regulated by the combination of sev-

eral TFs. The upstream region of each gene regu-

lated by the same TF must have at least one bind-

ing site specific for that particular TF. These bind-

ing sites must be specific enough so that the TF 

can “recognize” them and bind to them. However, 

it is well known that different sites bound by the 

same TF are not necessarily identical. The compu-

tational challenge is to find these sites and to suc-

cinctly and accurately describe all such binding 

sites.  

The simplest way to describe a binding site is to 

write down its consensus sequence. However, this 

is very imprecise and does not do justice to the 

complexity of the sequence signature. A sequence 

alignment of all known binding sites captures its 

complexity, but is not succinct enough. A logo 

format (Schneider and Stephens 1990; Crooks, 

Hon et al. 2004) is succinct enough, but is merely 

visual. The appropriate description is a profile, 

which is also referred to as a position-specific 

scoring matrix (PSSM) or a position weight ma-

trix (PWM) (Werner 1999; Stormo 2000). A pro-

file is a 4 × K matrix (K is the length of the bind-

ing site) whose entries give a measure of the pref-

erence of a base appearing at any given position.  

Examples of sophisticated algorithms to iden-

tify TF binding sites include MEME (Bailey and 

Elkan 1994), AlignACE (Hertz and Stormo 1999), 

Bioprospector (Liu, Brutlag et al. 2001), MDscan 
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(Liu, Brutlag et al. 2002), YMF (Sinha and 

Tompa 2003), Weeder (Pavesi, Mereghetti et al. 

2004) and many more. All these methods attempt 

to find sequence signatures that are significantly 

overrepresented in the upstream regions of a given 

gene set (typically a cluster of co-regulated genes 

from analyzing microarray data, or a gene set in-

ferred from a ChIP-Chip experiment) when com-

pared to an appropriately chosen background.  

Despite the successful application of the algo-

rithms listed above, each of them has certain limi-

tations (Hu, Li et al. 2005; Tompa, Li et al. 2005; 

GuhaThakurta 2006; MacIsaac and Fraenkel 

2006; Sandve and Drablos 2006). First, all these 

methods are prone to predict a large number of 

motifs, many of which are false-positives, partly 

because TFs show remarkable flexibility in the 

binding sites they can potentially bind to. Second, 

all these methods report statistically over-

represented motifs. However, statistical 

significance of motifs need not be synonymous 

with biological relevance of motifs. Binding of 

TFs to their binding sites is a complex process and 

may be assisted or hindered by many other unex-

plained factors.  

Comparative genomics data is a promising new 

source of information that can help to improve 

motif prediction. With the availability of an in-

creasing number of whole genome sequences of 

evolutionarily-related genomes, it is practical to 

incorporate the comparative genomics data into 

the motif discovery process. The basic assumption 

is that transcription factors and transcriptional 

mechanisms involved in fundamental cellular 

processes are likely to be conserved among evolu-

tionary-related genomes. Consequently, the bind-

ing sites for such TFs are also likely to be con-

served. Therefore, availability of comparative ge-

nomics data is likely to provide additional support 

to the predictions of binding sites. The simplest 

way to deal with data on additional genomes is to 

pool together the upstream regions of all available 

genomes and to apply traditional motif detection 

methods. However, this is not an optimal utiliza-

tion of the comparative genomics data. The “phy-

logenetic footprinting” strategy is a sophisticated 

method used to find motifs that are conserved for 

a particular gene across related organisms 

(Blanchette and Tompa 2002). Several subtle ap-

proaches such as PhyloCon (Wang and Stormo 

2003), orthoMEME (Prakash, Blanchette et al. 

2004), CompareProspector (Liu, Liu et al. 2004), 

EMnEM (Moses, Chiang et al. 2004), PhyME 

(Sinha, Blanchette et al. 2004), and PhyloGibbs 

(Siddharthan, Siggia et al. 2005) were developed 

recently to solve this problem. In these ap-

proaches, either an EM-based algorithm, a greedy 

algorithm or a Gibbs Sampling strategy was ap-

plied to optimize an objective function, while tak-

ing the phylogenetic relationships into account. 

The main problem with these methods is that phy-

logenetic relationships are often not easy to infer 

and not very reliable. Also, any motif that is 

unique to particular genomes or in upstream re-

gions of genes with no orthologs in some related 

genomes will not be detected. Most of above 

methods also need an alignment of the input se-

quence. Like phylogenetic relationships, align-

ments are also often unreliable. Inaccurate align-

ments (or phylogeneties) lead to errors in profile 

matrices, and ultimately in motif prediction. 

Another challenge in motif prediction is to de-

velop scoring functions that reflect biological sig-

nificance. Several popular scoring functions in-

clude IC (information content), MAP, Group 

Specificity score, LLBG (least likely under the 

background model) and Bayesian scoring function. 

However, as explained earlier, algorithms that use 

these scoring schemes end up with a large number 

of false positives in their predictions. When deal-

ing with multiple genomes, the degree of conser-

vation of the ‘hits’ of a profile across the many 

genomes can be used as a crude surrogate for the 

significance of the motif. However, this metric 

has its shortcomings. In this paper, we propose a 

metric to measure such biological significance. 

In this paper, we propose a new algorithm 

called IEM (Iteratively Enhancing Motif Discov-

ery). IEM is an iterative version of an earlier algo-

rithm called EMR (Enhancing Motif Refinement) 

(Zeng and Narasimhan 2007).  It differs from 

other earlier approaches in that no attempt is made 

to perform de novo detection of motifs (although 

that would be easy to incorporate). Instead, com-



IEM: An Algorithm for Iterative Enhancement of Motifs Using Comparative Genomics Data 

3 

parative genomics data is used to “enhance” any 

given motif. These motifs may have been discov-

ered by other computational methods, or may 

have been identified by laboratory techniques. 

Thus our method leverages the best-known motif 

discovery methods, or utilizes the (potentially in-

complete) knowledge of previous studies while 

incorporating newly available comparative ge-

nomics data.  

The research described here is significant for 

the following reasons. First, there is a clear need 

to reduce the number of false positives predicted 

by traditional tools. Second, our method can make 

use of partial information (on one or more binding 

sites), which may be available as a result of bio-

logical experiments. Third, with the availability of 

high throughput gene expression techniques like 

Microarrays and ChIP-Chip experiments, it is 

possible to get sets of co-expressed genes 

involved in the same metabolic pathway (and, 

therefore, potentially coregulated). Finally, our 

results show that the IEM algorithm has superior 

ability to overcome the shortcoming of previous 

methods and to effectively utilize any available 

comparative genomics data. 

2 METHODS 

2.1 Algorithm 

The IEM algorithm takes as input an “unrefined” 

motif for a given genome Γ1 (called the reference 

genome); this motif may have been generated us-

ing any reasonable existing motif detection 

method. Alternatively, the input could be a known 

binding site or a crude approximation based 

loosely on some experiments. Using one or more 

additional genomes Γ2  (referred to as the related 

genomes), and the corresponding orthology in-

formation between Γ1 and Γ2, the algorithm re-

turns an enhanced motif. The refinement proce-

dure is EM-based, as described below in Section 

2.1.3.  

2.1.1 Basic Expectation Maximization (EM) Al-

gorithm   Since our algorithm is EM-based, we 

first present an adaptation of the classical EM al-

gorithm (Dempster, Laird et al. 1977) for ab initio 

motif discovery (Lawrence and Reilly 1990). Mo-

tif prediction can be thought of as a parameter es-

timation process for a mixture model: (1) a model 

for the motif and (2) a model for the background. 

Roughly speaking, the algorithm can be described 

as follows: In the (Expectation) E-Step, for every 

site, the likelihood that it belongs to either model 

of the mixture is computed. And, in the (Maximi-

zation) M-Step, a set of parameters (i.e., the en-

tries of the profile) for the individual models (mo-

tif model and background model) are recomputed 

using the likelihood values computed in the E-step 

as weights in the calculation. Upon convergence, 

we end up with two models: one for motif and one 

for background. We randomly initialize parame-

ters for the motif model (by randomly choosing 

the locations of the binding sites), and then the E-

step and M-step are iterated until convergence.  

2.1.2 Improvements in MEME:   The original ver-

sion of EM as proposed by Lawrence and Relly 

(Lawrence and Reilly 1990) suffers from several 

limitations. For example, it does not state how to 

choose a starting point: It assumes that each se-

quence in the dataset contains exactly one occur-

rence of the motif; it also assumes that there is 

only one instance of the motif in each upstream 

region and does not attempt to find multiple in-

stances. Bailey and Elkan proposed a modified 

EM method called MEME to eliminate these limi-

tations (Bailey and Elkan 1994). Their method 

used sequences from the input as random start 

points. The method allows multiple instances of a 

motif in one upstream region. Furthermore, once 

the algorithm converges upon a motif, it is elimi-

nated from consideration and then the algorithm 

restarts to look for other motifs.  

MEME works reasonably well on many data 

sets, and is widely used. However, it has short-

comings. First, even though it choses a start point 

form among the subsequences of the input se-

quence, it may not converge upon a desired motif. 

Thus, it is not suitable for finding motifs for 

which we may know partial information. Second, 

the only way it can deal with comparative genom-

ics data is by merely pooling the input sequences 

from multiple genomes. However, as mentioned 
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before, this leaves the comparative genomics data 

underutilized. Our proposed IEM method consid-

ers comparative genomic data in a “dual” manner. 

2.1.3 IEM Algorithm   The IEM algorithm is de-

scribed below in Figure 1. Assume the input con-

sists of profile M1 = (mij), which is a 4 × K ma-

trix. K is the length of the motif and mij is the en-

try in the i
th

 row and j
th

 column of M1. Let the in-

dicator variable matrix be defined as Z = (zpq): 

where zpq = 1, if an instance of the motif starts 

from p
th

 position in the upstream region of the q
th

 

gene, and is equal to 0 otherwise. These indicator 

variables approximate the probability that a spe-

cific site (i.e., the sequence starting from the p
th

 

position in the upstream region of the q
th

 gene) is 

a binding site according to the profile matrix. The 

IEM algorithm estimates the indicator variable 

matrix Z1 and profile matrix M1 in the reference 

genome and the indicator variable matrix Z2 and 

profile M2 in the related genomes iteratively. The 

estimation process is similar to that in MEME 

(Bailey and Elkan 1994). However, in IEM a 

dual-step estimation is applied by incorporating 

comparative genomics data. Given indicator vari-

able zpq in one data source (either the reference 

genome or the related genomes) and a motif 

model (i.e., profile matrix) M for the entire data 

set (merged from M1 and M2), we can calculate 

the probability of observing a given upstream re-

gion Uq as follows: 

1

0

1 1

( | , )
l nk nk

q pq a aj

i j

P U Z M m m
− +

= =

= ∏ ∏ ,                         (1) 

where ma0 is background frequency for base a, maj 

is frequency for base a at position j in the motif 

model, k is the motif length, n is number of 1s in 

Zpq, and l is the length of upstream sequence. 

Then by Bayes’ rule, we can calculate the prob-

ability that the site at position p in upstream re-

gion q is a binding site as follows: 

1

1

( | , )
( | , )

( | , )

q pq
pq q

l k
q rq

r

P U Z M
P Z M U

P U Z M
− +

=

=

∑
                   (2) 

Intuitively, the IEM algorithm tries to refine a 

motif in each iteration in two successive EM steps. 

In each step, it computes the likelihood for each 

site in one data set over a model M (not merely M1 

or M2), which is arrived at by the previous maxi-

mization step applied over all the data sets. Comin 

et al. reported a subtle motif discovery method 

using a similar two-step strategy (Comin and 

Parida 2007). The differences are twofold. First, 

we incorporate comparative genomics data, and 

second, we use profiles instead of consensus se-

quences to represent the motifs. 

 

Input: a) Profile M1, motif length l, and associ-   

                ated gene set G1 from genome Γ1 

            b) upstream sequences of the ORFs in G1 

            c) Additional genome(s) Γ2,.and the              

                orthology map for all the genomes 

            d) upstream sequences of the ORFs in G2,   

                the orthologs of G1 in Γ2    

Output: Refined motif weight matrix Mr  

Algorithm:  

1. Estimate Z2 in G2 from M1. 

while (not converged) do 

2. Re-estimate M2 in G2 from Z2. 

3. M = merge(M1 , M2)  

4. Re-estimate Z1 in G1 from M. 

5. Re-estimate M1 in G1 from Z1. 

6. M = merge(M1 , M2)  

7. Re-estimate Z2 in G2 from M. 

endwhile 

9. Return M2.  

 

Figure 1. IEM Algorithm 

In summary, IEM algorithm does the following 

4 steps iteratively: 

1. In the first E step, the probabilities that each 

site in the reference genome belongs to the 

profile M1 are computed by using formula (2). 

2. In the first M step, the new profile M1 is esti-

mated by using every (indicated) binding site 

in the reference genome (i.e., weighted with 

Zpq). Profile M  is updated using the new sites. 

3. In the second E step, the probabilities that 

each site in the related genomes belong to the 

profile M2 are computed by using formula (2). 
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4. In the second M step, the new profile M2 is 

estimated by using every (indicated) binding 

site in the related genomes (i.e., weighted with 

Zpq). Profile M is updated by using the new 

sites. 

The “merge” operation mentioned in the algo-

rithm is achieved by creating the profile matrix 

from the instances of the sites with indicator value 

1 from all the genomes. Note that a generalization 

of the merging step is possible where the sites are 

weighted by the probability of that site belonging 

to a model (i.e., its score against the profile).  

2.2 Evaluation Approaches 

Evaluation of the IEM algorithm is a nontrivial 

task because very little experimentally verified 

data is available. Even the available experimen-

tally verified data is often only partial information. 

In one of the experiments described below, we 

consider the critical regulation activities in the 

arginine metabolic pathways in the bacterium P. 

aeruginosa (PAO1). We show that our algorithm, 

with the help of the complete genomes of six 

strains of P. aeruginosa, produces refined motifs 

with improved accuracy (see the Results section 

for details). The performance in such cases can be 

measured in terms of true positives and false posi-

tives from the available partial information. Here 

the true positives measure indicates the number of 

known binding sites that are predicted, while the 

false positives are the number of known non-

binding sites that are predicted.  

In another experiment, where no experimentally 

verified data was available, we have proposed two 

approaches to evaluate our results. One approach 

is to investigate the functional enrichment of the 

genes whose upstream regions have a predicted 

binding site. Using gene ontology analysis, we 

observed that the terms that were enriched were 

closely related to what is known about the regula-

tor. 

Another approach is to compute meaningful 

measures of motif scores. Traditional ones such as 

MAP and IC scores are not well-suited for com-

parative genomics data. A better approach is to 

use scores based on how well the predicted bind-

ing site is conserved across all the genomes under 

consideration. The simplest measure along these 

lines is what we will refer to as the conservation 

score. It is the average number of genomes in 

which any given predicted binding site occurs si-

multaneously in the upstream sequences of 

orthologous genes. This value ranges between 0 

and m, where m is the number of genomes (be-

sides the reference genome) being analyzed. Such 

a measure was proposed earlier (Gertz, Riles et al. 

2005). Let m denote the number of genomes (be-

sides the reference genome) being considered. Let 

n be the total number of genes in the reference 

genome whose upstream sequence has at least one 

predicted site of the motif, and let si be the num-

ber of genomes in which the ortholog of gene i 

contains a site in its upstream region. Then the 

conservation score S is defined as: 

1

n i

i

s
S

n=
=∑                                                          (3) 

The weakness of this conservation score is that 

it does not account for some key facts. In the fol-

lowing discussion, let A and B be two predicted 

motifs with the same conservation score, i.e., 

same average hits per genome.   

(1) If A has more instances than B in which si 

equals to m, it should be considered more 

significant.  

(2) If A has more hits than B in the reference 

genome, then it should be considered more 

significant. 

To overcome the above disadvantages, we 

propose a new score, which we refer to as the 

weighted conservation score. It is given as: 

[ ] 1

1

log

m
i i

i
c

m
i

i

iw n
S mn

n w

=

=

=
∑

∑
, 1i iw w −>   i∀ ,             (4) 

where m is the number of genomes being consid-

ered, n is the number of genes in the reference ge-

nome whose upstream regions contain at least one 

instance of the predicted motif, ni is the number of 

genes that has i number of genomes in which the 

corresponding ortholog contains at least one in-

stance of the motif in its upstream region, and wi 

is a suitable weight constant that satisfies wi > wi-1 

for all i, implying that if a motif instance occurs in 
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more orthologs then it should be weighted higher. 

wi is chosen to be i in following example. 

We highlight the differences between the con-

servation score and the weighted conservation 

score using simple examples. In  Figure 2, motifs 

A and B have the same conservation score. Unlike 

motif B, motif A has instances across all related 

genomes in the upstream regions of three ortholo-

gous gene sets. We argue that motif A is more 

conserved than motif B. The weighted conserva-

tion score reflects this intuition. Motif C, with the 

same conservation score as motif D, has more in-

stances in the reference genome, which may indi-

cate a more important biological role. The 

weighted conservation score rewards motifs A 

and C. 

3 RESULTS 

3.1 Results on the arginine metabolic path-

way study 

Metabolic pathways have been widely studied. 

They can be extremely complex, and may involve 

large numbers of genes. Often every path in the 

network involves one or more TFs and the genes 

regulated by them. However, only a few of genes 

and TFs in the pathways may have been identified, 

and even fewer of the TF binding sites may be 

known. A useful problem is to identify the genes 

and TFs and their binding sites specifically in-

volved in a specific pathway. Starting from one or 

two experimentally verified binding sites, can we 

predict the rest of the relevant binding sites of the 

genes in the pathway? Furthermore, can we iden-

tify such a gene set? We will show that our IEM 

algorithm can help to address these questions. 

In order to evaluate our results, we used a well 

studied pathway - the arginine metabolic pathway 

in P. aeruginosa, as an example. It is already 

known that P. aeruginosa possesses four different 

pathways for utilization of arginine (Lu, Yang et 

al. 2004): the arginine deiminase (ADI) pathway, 

the arginine succinyltransferase (AST) pathway, 

the arginine decarboxylase (ADC) pathway, and 

the arginine dehydrogenase (ADH) pathway. Un-

der anaerobic conditions, arginine can be used as 

a direct source of ATP via the ADI pathway. 

ArgR is a TF in the ADH pathway. Lu  et al. used 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Shown are examples that highlight the differences between the 

conservation score, S, and the weighted conservation scores, Sc.  

microarray experiments to identify candidate 

genes for the ArgR regulon (Lu, Yang et al. 2004).  

It was reported that ArgR regulated 37 (28 

induced and 9 repressed) genes from 17 operons. 

Eighteen of the 28 arginine-inducible genes are in 

4 transcriptional units that have been reported 

previously as members of the ArgR regulon (Itoh 

1997; Park, Lu et al. 1997; Nishijyo, Park et al. 

1998; Lu, Winteler et al. 1999; Lu and Abdelal 

2001; Hashim, Kwon et al. 2004). Lu et al. also 

identified several new ArgR regulon members 

among these 37 genes, and verified them by wet 

lab experiments. Since the ArgR system is well 

studied, we used it to test the IEM algorithm.  
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3.1.1 Arginine pathway data set   Upstream re-

gions of the 17 transcriptional units (operons) 

were obtained for five strains of P. aeruginosa 

(PAO1, PA14, PACS2, PA2192, and PA3719). 

We also included 6 genes involved in the ADC 

pathway and the ADH pathways that were known 

not to bind to ArgR.  

3.1.2  Prediction Comparison Procedure   To 

show the power of our technique, we assumed for 

our experiments that we know only one (randomly 

chosen) instance of a binding site for ArgR. We 

used a subset of the operons mentioned above (12 

out of 17 from ADI pathways and all 6 from 

ADC/ADH pathways). We then set out to see if 

the algorithm successful in locating previously 

known binding sites in the remaining 5 operons. 

On an average the refined motif missed 1.2 of the 

5 known binding sites. 

     We applied MEME, AlignACE, and IEM to 

the same data set. The results were compared for 

an experiment with data from two genomes 

(PAO1 and PA14) and another experiment with 

data from five genomes (PAO1, PA14, PACS2, 

PA2192, and PAC3719). The idea was to get a 

sense of how much the comparative genomics 

data helped in the task. MEME and AlignACE 

were applied to the pooled data. For IEM, the ini-

tial profile was created using the motif instance. 

The frequency of the base from the consensus se-

quence was set at 0.7, and the frequencies of other 

bases were set at 0.1. Each of the three programs 

was run 10 times for the data set introduced ear-

lier. We counted the number of true predictions 

(TP, True Positives), the number of false predic-

tions (FP, False Positives) and the motif scores IC 

(Information Content), MAP (maximum a poste-

riori probability) and the weighted conservation 

scores Sc. 

3.1.3 Arginine pathway prediction comparisons 

results     Tables 1 and 2 present the results from 

two experiments (two genome case vs five ge-

nome case) for the 10 runs. The three columns 

present the results with the three programs. In 

cases where a motif was reported, the number of  

 

 

 

 

 

 

 

 

 

 

 

Table 1 Motif predicted by IEM, MEME, and AlignACE using data on 2 

strains of P. aeruginosa (PA01and PA14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Motif predicted by IEM, MEME, and AlignACE using data on 5 

strains of P. aeruginosa (PA01, PA14, PA2192, PACS2, and PAC3719). 

TPs and FPs along with three measures of quality 

of the motif are reported. The IEM algorithm 

finds the ArgR binding motif in every instance. In 

the experiments involving two genomes, the motif 

AlignACE. However, when four genomes were 
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used, the scores using the IEM algorithm was 

markedly superior to those with the other two 

methods (when they were reported). 

3.2 Results on ampR  

In this section, we discuss our experiments with 

the IEM algorithm applied to data from 

experiments on the transcription factor, AmpR, in 

P. aeruginosa. AmpR was recently reported as a 

global transcription factor that regulates the ex-

pression of many virulence factors (Kong, Jay-

awardena et al. 2005). To better understand the 

regulon of AmpR, the consensus sequence (5’-

TCTGCTGCAAATTT-3’) of AmpR binding sites 

in C. freundii and E. cloacae was used by Kong et 

al. to find an exactly conserved sequence site 

within the upstream region of ampC in PAO1 

(Kong, Jayawardena et al. 2005). They also ana-

lyzed the upstream regions of all the genes puta-

tively regulated by AmpR with the hope of find-

ing a potential AmpR binding site. Tools such as 

MEME and AlignACE failed to find anything re-

sembling the binding site from the upstream re-

gion of ampC..  

The IEM algorithm was then applied using the 

consensus sequence mentioned above, a potential 

hand-crafted list of 10 genes possibly regulated by 

AmpR, and newly available comparative genom-

ics data sets from four closely related strains of 

Pseudomonas (PA14, PA2192, PACS2, and 

PAC3719). As mentioned in the previous section, 

a crude motif profile was constructed based on the 

consensus sequence. The results before and after 

applying the IEM algorithm are shown in Table 3. 

The refined motif showed improved scores ac-

cording to three different motif scores. After re-

finement, we found that putative AmpR binding 

site appears only in 3 of the 10 genes mentioned 

above (lasA, lasR, and ampC) across all five 

strains of P. aeruginosa. Support for these 3 pre-

dictions was obtained using lacZ fusions in the 

Mathee lab. Further experimental verification is 

needed and work is underway in the Mathee lab. 

We conjecture that the remaining 7 genes are only 

indirectly regulated by AmpR. 

We then used the refined motif to scan the entire 

PAO1 genome for instances of the motif in the     

upstream regions. Based on the likelihood value 
 

 

 

 

 

 

 

 

 

Table 3 Characteristics of motif before and after refinement 

calculated in formula (2), we ranked the “hits” 

and chose the top 150 genes and followed it up 

with gene function enrichment analysis. See Table 

4 for the results. The term with the top hit, i.e., the 

lowest P-value was “periplasmic space”. This is 

considered significant because, ampR is known to 

be involved in cell-wall recycling. A similar 

search with the motif before refinement did not 

find this GO-term.  
 

3.3 Results on whole genomic data 

Next we discuss our experiments with yeast data 

sets. Recently, Kellis et al. compared five yeast 

species to identify regulatory elements in the en-

tire genome by searching for conserved segments 

across different yeast species (Kellis, Patterson et 

al. 2003). They developed a motif score called 

MCS (Motif Conservation Score) to measure the 

conservation ratio of a motif compared to the ran-

dom patterns of the same length and degeneracy 

(Kellis, Patterson et al. 2003).  A list of 72 full 

motifs having MCS at least 4 was reported. These 

72 predicted motifs showed strong overlap with 

28 of the 33 known motifs in yeast. However, the 

motifs used in the paper were represented using 

generalized consensus sequences (i.e., using 

IUPAC codes to represent nucleotide degeneracy) 

instead of the more powerful profile matrix. We 

set out to consider whether the IEM algorithm 

could improve the predictions from that work.  

Starting from the results of Kellis et al., we used 

IEM to refine each of the 72 motifs mentioned 

above. Data from four yeast genomes (S. cere-

visiae, S. paradoxus, S. mikatae and S. bayanus) 

were used. Complete results on the refined motifs 

are available at our supplementary results website: 
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[http://biorg.cs.fiu.edu/IEM/]. Below we show 

some of the highlights in Table 5. In each case the 

number of hits went down after the refinement.  

 

 

 

 

 

 

 

 

 

 

 

 

4 DISCUSSION AND CONCLUSIONS 

In this paper we propose a new algorithm to refine 

motifs with the help of comparative genomics 

data. The algorithm incorporates an improved 

scoring scheme that is sensitive to hits in the re-

lated genomes. The algorithm is inspired by the 

technique of “co-training” from the field of data 

mining, where lessons learnt from one data source 

is iteratively used to model the situation for an-

other data source. The results show clear im-

provements in the quality of the motifs output.  

The IEM algorithm does have its own shortcom-

ings, which we continue to improve. First, it does 

not attempt to change the length of the motif from 

the initial motif it started with. Second, it works 

best if the genomes considered are very closely 

related and is useful in cases where the phyloge-

netic relationships between the genomes are not 

known. If phylogentic information is available, 

then the algorithm can be modified to factor this 

in, along the lines of several previous algorithms.  
 

 

 

 

 

 

 

 

 

 

Table 5 Results of motif refinement for the yeast data set. For each of the 

five motifs, the upper row is the consensus sequence from Kellis et al., 

while the lower row is the result after refinement by the IEM algorithm.  
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