
Data Structures
Giri Narasimhan

Office: ECS 254A
Phone: x-3748
giri@cs.fiu.edu

Course Website Correction
u  Course Website: https://users.cs.fiu.edu/~giri/teach/

3530Fall16.html

8/29/16 COP 3530: DATA STRUCTURES

Time Complexities
u  Sequence of Statements

statement 1;
statement 2;
...
statement k;

u  total time = sum of times for all statements:
T(n) = time(statement 1) + time(statement 2) + ... + time(statement k)

u  If each statement is "simple" (only involves basic
operations) then the time for each statement is
constant and the total time is also constant: O(1).

8/29/16 COP 3530: DATA STRUCTURES

RECAP

Time Complexities … 2
u  Loops

q  The running time of a loop is, at most, the running time of
the statements inside the loop x the # of iterations

//executes n times
For i = 1 to n do
 m = m + 2; // constant time

Total time T(n) = constant c x n = cn = O(n)

8/29/16 COP 3530: DATA STRUCTURES

RECAP

Time Complexities … 3
u  Nested Loops

q  Analyze from the inside out. Total running time is the
product of the size of the loops

//outer loop executes n times
For i = 1 to n do
 //inner loop executes n times
 For i = 1 to n do
 k = j + 1; // constant time

Total time T(n) = c x n x n = cn2 = O(n2)

8/29/16 COP 3530: DATA STRUCTURES

RECAP

Challenging Cases

MaxSubseqSum(A)
Initialize maxSum to 0
N := size(A)
For i = 1 to N do
 For j = i to N do

 Initialize thisSum to 0
 for k = i to j do
 add A[k] to thisSum
 if (thisSum > maxSum) then

 update maxSum

jX

k=i

1 = j � i+ 1

NX

j=i

(j � i+ 1) =
(N � i+ 1)(N � i+ 2)

2

NX

i=1

(N � i+ 1)(N � i+ 2)

2

=
NX

i=1

i2

2
� (N +

3

2
)

NX

i=1

i+
1

2
(N2 + 3N + 2)

NX

i=1

1

=
N3 + 3N2 + 2N

6
= O(N3)

1

8/29/16 COP 3530: DATA STRUCTURES

RECAP

Challenging Case … 2
BinarySearch(A, key, low, high)

If (low > high) return not found

mid = (low + high)/2

If A[mid] = key then return mid

If A[mid] > key then

 BinarySearch(A, key, low, mid-1)

Else

 BinarySearch(A, key, mid+1, high)

u  On each recursive call,
high-low+1 is halved

u  How many times do you
have to halve N before
it becomes smaller than
1?

u  Answer ≈ log2N Why?

8/29/16 COP 3530: DATA STRUCTURES

Time Complexity
u  Need: To provide information about time taken by an

algorithm (or program)

u  Obvious that time depends on size of input

u  Idea: Write down T(n) = time taken by an algorithm as a
function of n, size of input

u  But time may vary for different inputs of same length

u  Idea: Let T(n) = maximum time taken by an algorithm on
any input of size n
q  Worst-case Time Complexity

8/29/16 COP 3530: DATA STRUCTURES

Time Complexity
u  Worst-case Time Complexity

q  T(n) = max time for an algorithm on any input of size n

u  Best-case Time Complexity
q  B(n) = min time for an algorithm on any input of size n

u  Average-case Time Complexity
q  A(n) = average time for an algorithm on inputs of size n

8/29/16 COP 3530: DATA STRUCTURES

“Abstract” Data Structure
u  Abstract Data Type (ADT); described by

q  Kind of data it stores
q  Operations performed on it (no implementations)

u  Data Structure; consists of
q  data it stores
q  Operations performed on it with implementations

u  Example: Priority queue is a “abstract” queue of entities each
associated with a priority value.
q  Operations:
•  Insert entity with given priority
•  Delete item with highest priority

q  Java interface is an example of an ADT
q  Java class = ADT + Implementation is a data structure
q  List vs LinkedList or ArrayList

8/29/16 COP 3530: DATA STRUCTURES

Standard ADTs
u  List

u  Stack

u  Queue

u  Tree

u  Graph

u  Set

u  Basic operations in (most)
ADTs
q  Insert
q  Delete
q  Search/Find/Member

8/29/16 COP 3530: DATA STRUCTURES

Linear	
 Data	
 Structures	

List
u  A List deals with a “linear” list of entities of the form

q  x0, x1, … , xn-1

q  Each entity has a position: xi has position i
q  Elements are all of same “type”
q  Many, many operations are possible :
•  Insert, insert at position, delete, delete from position, prev,

next, find, printList, makeEmpty, isEmpty, size, sort, …
q  Lists can be implemented in one of 2 ways
•  Arrays or Linked lists

q  Arbitrary complex types are easily handled in practice
using “generic” java class

8/29/16 COP 3530: DATA STRUCTURES

Java’s List interface
u  Get(idx)

u  Set(idx, value)

u  Add(idx, value)

u  Remove(idx)

u  listIterator(pos)

8/29/16 COP 3530: DATA STRUCTURES

Java’s ArrayList
u  Simple, “resizable” array implementation of a List

u  Each item can be of a generic type

u  Built on top of AbstractList, Collection, and Object

u  Assumes list is Serializable, RandomAccess, Cloneable

u  Large collection of operations available, including
q  Add(x) and Add(index, x)
q  Contains(x)
q  Remove(x), Remove(index)

8/29/16 COP 3530: DATA STRUCTURES

(My)ArrayList Implementation
u  See Figures 3.15 and 3.16 from Weiss text

u  Maintains
q  list of items in an array called theItems[]
q  Array capacity (length of above array)
q  Current size called theSize

u  Allows
q  Change in capacity (capacity doubled if array fills up)
•  No change upon removal

q  Implementation of get(idx) and set(idx,x)
q  Implementation of size(), isEmpty(), clear()
q  Implementation of Iterator interface
•  Index called current
•  next(), hasNext(), remove()

8/29/16 COP 3530: DATA STRUCTURES

add and remove in ArrayList
u  Both involve moving items

u  Operation add(idx,x) involves moving all items from
position idx onward to move in order to make space for x

u  Operation remove(idx) involves moving all items from
position idx+1 to close the gap created by the removal

u  Study carefully how ArrayIterator is implemented

8/29/16 COP 3530: DATA STRUCTURES

Java’s LinkedList
u  Simple, extendible, doubly-linked List implementation

using pointers

u  Each item can be of a generic type

u  Assumes list is Serializable, RandomAccess, Cloneable

u  Large collection of operations available, including
q  Add(x) and Add(index, x)
q  Contains(x)
q  Remove(x), Remove(index)

8/29/16 COP 3530: DATA STRUCTURES

(My)LinkedList Implementation
u  See Figures 3.24 -- 3.16 from Weiss text

u  Maintains
q  Doubly linked list of Nodes of unlimited capacity
q  Pointer to extra 1st item (header node) called beginMarker and extra last

item called endMarker
q  Node holds data and pointers to prev and next items
q  Current size called theSize
q  Extra entry called modCount used to help Iterator detect changes in

collection

u  Allows
q  Implementation of get(idx) and set(idx,x)
q  Implementation of size(), isEmpty(), clear()
q  Implementation of Iterator interface
•  Index called current
•  next(), hasNext(), remove()

8/29/16 COP 3530: DATA STRUCTURES

