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Standard Data Structures 
u  3 operations 

q  Insert, delete, find 

u  We want to make them as efficient as possible 

u  Best we have so far is AVL trees 
q  All 3 operations take O(log n) time 
q  General idea is to organize data so that  

•  Search is easier 
•  Insert to and delete from place where you would search 

u  What if you knew exactly where to search/insert/delete 
q  Idea; Use the value to decide where to place 
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Hashing: Key value to location 
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Let “value” equal location 
u  Use SSN or birthdate as location for student record 

u  Assume chances of “collision” is close to zero 
q  Insert: place the record in appropriate location 
q  Find: if appropriate location occupied – then found! Else 

not found 
q  Delete: if appropriate location occupied – then delete 

item. Else nothing to delete 

u  Each operation O(1) time – incredibly efficient 

u  Memory: array of size 10,000 or 365 even if only 10 
students 
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Let “value” determine location 
u  Apply a hash function to value and use it as location 

q  Hash value: h(x) = x mod b 
q  Hash value: h(x) = ax mod b 
q  Hash value: h(x) = h1(h2(x)) 
q  Middle digits of x2. For example, 45672 = 20857489 

•  h(4567) = 57 

u  Assume that hash function has following properties: 
q  hashes each value to a unique location 
q  values in a given domain are hashed to a location uniformly 

at random in a given range 
q  Hash table size ≈ twice number of items to insert 
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Simple hash functions 
hashValue (x) = x % tableSize 

u  Let tableSize = 100 
q  X = 173, hashValue(X) = 73 
q  X = 3452, hashValue(X) = 52 
q  X = 9758, hashValue(X) = 58 
q  X = 800, hashValue(X) = 0 

hashValue (x) = x3S3 + x2S2 + x1S1 + x0S0 % tableSize 

u  Let S = 128  
q  X = “comb”  

 hashValue(X) = (‘c’ 1283 + ‘o’ 1282 + ‘m’ 1281 + ‘b’ 1280) % tableSize 
q  X = “eye” 

 hashValue(X) = (‘e’ 1282 + ‘y’ 1281 + ‘e’ 1280) %  tableSize 



Collision Resolution 
u  Collision: when two items hash to the same location 

u  Many resolution methods exist 
q  Chaining 
q  Open Addressing 
q  Bucketing 
q  Double Hashing 
q  Overflow 
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Separate Chaining 
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Animation: 
https://www.cs.usfca.edu/~galles/visualization/OpenHash.html 



Separate Chaining 
u  Best when stored in main memory. Disk-based separate 

chaining is not efficient 

u  If N items stored in table of size M, then average list 
length is O(N/M) = average time complexity for search 

u  Average Time Complexity = O(1), if M = O(N) 

u  Worst-Case Time Complexity = length of longest chain  

u  Theorem: Expected length of longest chain = O(log N) 

10/12/16 COP 3530: DATA STRUCTURES 



Bucket Hashing 
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Open Addressing / Linear Probing 
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Open Addressing / Linear Probing 
u  Insert: If hash location is “occupied”, place item in first 

empty location scanning from hash location 

u  Find: If item is not in correct location, search for item 
by scanning from hash location until first empty location 
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Problems with Linear Probing 
u  Clustering – also called Primary Clustering 

q  Clusters tend to get larger because 
probability of collision increases with cluster 
size. 
•  http://www.cs.armstrong.edu/liang/animation/

web/LinearProbing.html 
•  https://www.cs.usfca.edu/~galles/visualization/

ClosedHash.html 
q  Small clusters merge to become large 

clusters, causing secondary clustering.  
q  Making table larger will reduce collisions, but 

is wasteful 
q  Handling deletions is a problem 
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Problems with Linear Probing 
u  PRIMARY CLUSTERING 

q  Large blocks of occupied cells are formed.  
q  Amount of clustering and size of clusters is dependent on LOAD 

FACTOR (fraction of table that is occupied). 
q  It deteriorates the performance. 

u  NAÏVE ANALYSIS: 
q  If load factor is F, and table size is T, then the average time 

for search is FT. 
•  INCORRECT !! 

q  If load factor is F, then the average time for search is: 
•  1 + 1/(1-F)2)/2 

q  If F = 50%, then the average cluster time is 2.5 
q  If F = 90%, then the average cluster time is 50.5 
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Clustering 
u  Linear Probing leads to primary clustering 

u  LINEAR PROBING: Try H, H+1, H+2, H+3, … 

u  QUADRATIC PROBING: Try H, H+12, H+22, H+32, … 
q  Seems to eliminate primary clustering 

u  Linear Probing also leads to secondary clustering 
q  This is when large clusters merge to become larger clusters. 
q  It is not clear if quadratic probing eliminates it. 

u  DOUBLE HASHING: Try H1(x), H1(x) + H2(x), H1(x) + 2H2(x), H1(x) + 
3H2(x), … 
q  This is an improvement over quadratic probing. But more expensive 

to implement. 

u  SEPARATE CHAINING: need linked list or dynamic arrays. 



Handling Deletions 
u  Straightforward in Separate Chaining 

u  Challenges in Open Addressing 
q  Upon collision, the value is stored in first open location.  
q  Problem: if an item is deleted, it might appear as if there 

is no other item that mapped to that location, and a find 
operation would return “NOT FOUND” 

q  Solution: Upon deletion, leave a place holder to indicate 
this used to be occupied. 
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Deletions & Performance 
u  DELETES: 

q  Need to be careful to leave a “marker”.  

u  OPTIMAL VALUES OF LOAD FACTORS 

u  Doubling table size if load factors become high. 

u  REHASHING 

u  Hashing works very well in practice, and is widely used. 

u  Used to implement SYMBOL TABLES in compilers and various 
software systems. 

u  How does it compare to BST? 
q  O(log N) versus O(1) 
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Figure 20.5 
Illustration of primary clustering in linear probing (b) versus no clustering (a) 
and the less significant secondary clustering in quadratic probing (c). Long 
lines represent occupied cells, and the load factor is 0.7.

Data Structures & Problem Solving using JAVA/2E       Mark Allen Weiss      © 2002  Addison Wesley 



03/11/04 Lecture 18 

Figure 20.4 
Linear probing 
hash table after 
each insertion
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Figure 20.6 
A quadratic 
probing hash table 
after each 
insertion (note that 
the table size was 
poorly chosen 
because it is not a 
prime number).
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