
Data Structures
Giri Narasimhan

Office: ECS 254A
Phone: x-3748
giri@cs.fiu.edu

Standard Data Structures
u  3 operations

q  Insert, delete, find

u  We want to make them as efficient as possible

u  Best we have so far is AVL trees
q  All 3 operations take O(log n) time
q  General idea is to organize data so that

•  Search is easier
•  Insert to and delete from place where you would search

u  What if you knew exactly where to search/insert/delete
q  Idea; Use the value to decide where to place

10/12/16 COP 3530: DATA STRUCTURES

Hashing: Key value to location

10/12/16 COP 3530: DATA STRUCTURES http://i.stack.imgur.com/2Saxe.png

Let “value” equal location
u  Use SSN or birthdate as location for student record

u  Assume chances of “collision” is close to zero
q  Insert: place the record in appropriate location
q  Find: if appropriate location occupied – then found! Else

not found
q  Delete: if appropriate location occupied – then delete

item. Else nothing to delete

u  Each operation O(1) time – incredibly efficient

u  Memory: array of size 10,000 or 365 even if only 10
students

10/12/16 COP 3530: DATA STRUCTURES

Let “value” determine location
u  Apply a hash function to value and use it as location

q  Hash value: h(x) = x mod b
q  Hash value: h(x) = ax mod b
q  Hash value: h(x) = h1(h2(x))
q  Middle digits of x2. For example, 45672 = 20857489

•  h(4567) = 57

u  Assume that hash function has following properties:
q  hashes each value to a unique location
q  values in a given domain are hashed to a location uniformly

at random in a given range
q  Hash table size ≈ twice number of items to insert

10/12/16 COP 3530: DATA STRUCTURES

03/09/04 Lecture 17

Simple hash functions
hashValue (x) = x % tableSize

u  Let tableSize = 100
q  X = 173, hashValue(X) = 73
q  X = 3452, hashValue(X) = 52
q  X = 9758, hashValue(X) = 58
q  X = 800, hashValue(X) = 0

hashValue (x) = x3S3 + x2S2 + x1S1 + x0S0 % tableSize

u  Let S = 128
q  X = “comb”

 hashValue(X) = (‘c’ 1283 + ‘o’ 1282 + ‘m’ 1281 + ‘b’ 1280) % tableSize
q  X = “eye”

 hashValue(X) = (‘e’ 1282 + ‘y’ 1281 + ‘e’ 1280) % tableSize

Collision Resolution
u  Collision: when two items hash to the same location

u  Many resolution methods exist
q  Chaining
q  Open Addressing
q  Bucketing
q  Double Hashing
q  Overflow

10/12/16 COP 3530: DATA STRUCTURES

Separate Chaining

10/12/16 COP 3530: DATA STRUCTURES
http://i.stack.imgur.com/CSb6Y.png

Animation:
https://www.cs.usfca.edu/~galles/visualization/OpenHash.html

Separate Chaining
u  Best when stored in main memory. Disk-based separate

chaining is not efficient

u  If N items stored in table of size M, then average list
length is O(N/M) = average time complexity for search

u  Average Time Complexity = O(1), if M = O(N)

u  Worst-Case Time Complexity = length of longest chain

u  Theorem: Expected length of longest chain = O(log N)

10/12/16 COP 3530: DATA STRUCTURES

Bucket Hashing

10/12/16 COP 3530: DATA STRUCTURES http://ulam2.cs.luc.edu/353/spr13/notes/images/fig17.10.png

Open Addressing / Linear Probing

10/12/16 COP 3530: DATA STRUCTURES https://www8.cs.umu.se/~jopsi/dinf504/hashing_probe.gif

Open Addressing / Linear Probing
u  Insert: If hash location is “occupied”, place item in first

empty location scanning from hash location

u  Find: If item is not in correct location, search for item
by scanning from hash location until first empty location

10/12/16 COP 3530: DATA STRUCTURES

Problems with Linear Probing
u  Clustering – also called Primary Clustering

q  Clusters tend to get larger because
probability of collision increases with cluster
size.
•  http://www.cs.armstrong.edu/liang/animation/

web/LinearProbing.html
•  https://www.cs.usfca.edu/~galles/visualization/

ClosedHash.html
q  Small clusters merge to become large

clusters, causing secondary clustering.
q  Making table larger will reduce collisions, but

is wasteful
q  Handling deletions is a problem

10/12/16 COP 3530: DATA STRUCTURES

Problems with Linear Probing
u  PRIMARY CLUSTERING

q  Large blocks of occupied cells are formed.
q  Amount of clustering and size of clusters is dependent on LOAD

FACTOR (fraction of table that is occupied).
q  It deteriorates the performance.

u  NAÏVE ANALYSIS:
q  If load factor is F, and table size is T, then the average time

for search is FT.
•  INCORRECT !!

q  If load factor is F, then the average time for search is:
•  1 + 1/(1-F)2)/2

q  If F = 50%, then the average cluster time is 2.5
q  If F = 90%, then the average cluster time is 50.5

10/12/16 COP 3530: DATA STRUCTURES

03/09/04 Lecture 17

Clustering
u  Linear Probing leads to primary clustering

u  LINEAR PROBING: Try H, H+1, H+2, H+3, …

u  QUADRATIC PROBING: Try H, H+12, H+22, H+32, …
q  Seems to eliminate primary clustering

u  Linear Probing also leads to secondary clustering
q  This is when large clusters merge to become larger clusters.
q  It is not clear if quadratic probing eliminates it.

u  DOUBLE HASHING: Try H1(x), H1(x) + H2(x), H1(x) + 2H2(x), H1(x) +
3H2(x), …
q  This is an improvement over quadratic probing. But more expensive

to implement.

u  SEPARATE CHAINING: need linked list or dynamic arrays.

Handling Deletions
u  Straightforward in Separate Chaining

u  Challenges in Open Addressing
q  Upon collision, the value is stored in first open location.
q  Problem: if an item is deleted, it might appear as if there

is no other item that mapped to that location, and a find
operation would return “NOT FOUND”

q  Solution: Upon deletion, leave a place holder to indicate
this used to be occupied.

10/12/16 COP 3530: DATA STRUCTURES

03/09/04 Lecture 17

Deletions & Performance
u  DELETES:

q  Need to be careful to leave a “marker”.

u  OPTIMAL VALUES OF LOAD FACTORS

u  Doubling table size if load factors become high.

u  REHASHING

u  Hashing works very well in practice, and is widely used.

u  Used to implement SYMBOL TABLES in compilers and various
software systems.

u  How does it compare to BST?
q  O(log N) versus O(1)

03/09/04 Lecture 17

Figure 20.5
Illustration of primary clustering in linear probing (b) versus no clustering (a)
and the less significant secondary clustering in quadratic probing (c). Long
lines represent occupied cells, and the load factor is 0.7.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 20.4
Linear probing
hash table after
each insertion

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/09/04 Lecture 17

Figure 20.6
A quadratic
probing hash table
after each
insertion (note that
the table size was
poorly chosen
because it is not a
prime number).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

