
Data Structures
Giri Narasimhan

Office: ECS 254A
Phone: x-3748
giri@cs.fiu.edu

Sorting
u  Putting items in any order

u  Items need to be “comparable”

u  Need to know how to “compare”

u  Results of compare need to be “definitive” (YES/NO/
EQUAL)

10/12/16 COP 3530: DATA STRUCTURES

Complexity Measures
u  Number of Comparisons made

u  Number of Data Movements made

10/12/16 COP 3530: DATA STRUCTURES

Inefficient Sorting Algorithms

10/12/16 COP 3530: DATA STRUCTURES

Selection Sort
u  Repeatedly select the next smallest item and place it in

right location

u  Invariant: After k iterations first k smallest items are
in right location

u  In iteration k, find smallest item in locations k .. n and
swap it with item in location k

u  Time complexity of iteration k is O(n-k)

u  Total time complexity = (n-1) + (n-2) + … + 1 = O(n2)

10/12/16 COP 3530: DATA STRUCTURES

Insertion Sort
u  Repeatedly insert next item into “growing” sorted list

u  Invariant: After k iterations the first k locations are in
sorted order

u  In iteration k, insert item in location k into sorted
sublist in locations 1 .. k-1

u  Time complexity of iteration k is O(k)

u  Total time complexity = 1 + 2 + … + (n-2) + (n-1) = O(n2)

10/12/16 COP 3530: DATA STRUCTURES

02/19/04 Lecture 12

Figure 8.3
Basic action of insertion sort (the shaded part is sorted)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

02/19/04 Lecture 12

Figure 8.4
A closer look at the action of insertion sort (the dark shading indicates the
sorted area; the light shading is where the new element was placed).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

02/19/04 Lecture 12

Insertion Sort
 public static <AnyType extends Comparable<? super AnyType>>
 void insertionSort(AnyType [] a)
 {
 int j;

 for(int p = 1; p < a.length; p++)
 {
 AnyType tmp = a[p];
 for(j = p; j > 0 && tmp.compareTo(a[j - 1]) < 0; j--)
 a[j] = a[j - 1];
 a[j] = tmp;
 }
 }

Bubble Sort
u  Repeatedly bubble smaller items “upward”

u  Invariant: After k iterations the first k locations are in
sorted order

u  In iteration k, scan entire list from end comparing
adjacent items along the way and swapping if they are
out of order

u  Time complexity of iteration k is O(n)

u  Total time complexity = n (n-1) = O(n2)

10/12/16 COP 3530: DATA STRUCTURES

02/19/04 Lecture 12

ShellSort: Sophisticated Insertion Sort

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 8.5
Shellsort after each pass if the increment sequence is {1, 3, 5}

Idea: Make “sublists” and sort them using
insertion sort

02/19/04 Lecture 12

ShellSort
 public static <AnyType extends Comparable<? super AnyType>>
 void shellsort(AnyType [] a)
 {
 int j;

 for(int gap = a.length / 2; gap > 0; gap /= 2)
 for(int i = gap; i < a.length; i++)
 {
 AnyType tmp = a[i];
 for(j = i; j >= gap &&
 tmp.compareTo(a[j - gap]) < 0; j -= gap)
 a[j] = a[j - gap];
 a[j] = tmp;
 }
 }

Improved Sorting Algorithms

10/12/16 COP 3530: DATA STRUCTURES

Divide and Conquer
u  Divide the work into smaller subproblems by partitioning

u  Sort each partition separately

u  Merge sorted sublists

10/12/16 COP 3530: DATA STRUCTURES

02/19/04 Lecture 12

Merge Sort
 public static <AnyType extends Comparable<? super AnyType>>
 void mergeSort(AnyType [] a) {
 AnyType [] tmpArray = (AnyType[]) new Comparable[a.length];
 mergeSort(a, tmpArray, 0, a.length - 1);
 }

 private static <AnyType extends Comparable<? super AnyType>>
 void mergeSort(AnyType [] a, AnyType [] tmpArray,
 int left, int right)
 {
 if(left < right)
 {
 int center = (left + right) / 2;
 mergeSort(a, tmpArray, left, center);
 mergeSort(a, tmpArray, center + 1, right);
 merge(a, tmpArray, left, center + 1, right);
 }
 }

Majority of work
happens here in merge.

02/19/04 Lecture 12

Merge in Merge Sort
 private static <AnyType extends Comparable<? super AnyType>>
 void merge(AnyType[] a, AnyType[] tmpArray, int leftPos, int rightPos, int rightEnd)
 {
 int leftEnd = rightPos - 1;
 int tmpPos = leftPos;
 int numElements = rightEnd - leftPos + 1;
 while(leftPos <= leftEnd && rightPos <= rightEnd)
 if(a[leftPos].compareTo(a[rightPos]) < 0)
 tmpArray[tmpPos++] = a[leftPos++];
 else
 tmpArray[tmpPos++] = a[rightPos++];
 while(leftPos <= leftEnd) // Copy rest of first half
 tmpArray[tmpPos++] = a[leftPos++];
 while(rightPos <= rightEnd) // Copy rest of right half
 tmpArray[tmpPos++] = a[rightPos++];

 for(int i = 0; i < numElements; i++, rightEnd--)
 a[rightEnd] = tmpArray[rightEnd];
 }

Time Complexity:
O(La + Lb)

Analysis: Recursion Tree

10/12/16 COP 3530: DATA STRUCTURES http://opendatastructures.org/versions/edition-0.1c/ods-java/img1231.png

Alternative Analysis
u  Let T(n) = time complexity of MergeSort on list with n

elements

u  We know that time complexity of merge operation on
two sorted lists of total length n is O(n)

u  We can write a recurrence relationship as follows:
q  T(n) = T(n/2) + T(n/2) + O(n)

10/12/16 COP 3530: DATA STRUCTURES

T(n) = 2T(n/2) + O(n)
u  Expansion Method:

T(n) = 2T(n/2) + O(n)
T(n) ≤ 2T(n/2) + cn
T(n) ≤ 2(2T(n/4) + cn/2) + cn
T(n) ≤ 4T(n/4) + 2cn
T(n) ≤ 4(2T(n/8) + cn/4) + 2cn
T(n) ≤ 8T(n/8) + 3cn
…
T(n) ≤ nT(1) + (log n) cn
T(n) = O(n log n)

10/12/16 COP 3530: DATA STRUCTURES

T(n) ≤ 8T(n/8) + 3cn T(n) ≤ 8T(n/8) + 3cn

Use “Guestimations”
u  Guess that T(n) = O(n) ≤ cn

q  Then we know that T(n/2) = cn/2
q  Right side = 2(cn/2) + c1n = cn + c1n
q  Since both c and c1 > 0, we cannot make right side ≤ cn
q  Failure!

u  Guess that T(n) = O(n2) ≤ cn2

q  Then we know that T(n/2) ≤ c(n/2)2

q  Right side = 2(cn2/4) + c1n = cn2/2 + c1n
q  We can make right side ≤ cn2 by choosing c large enough
q  But was our choice too liberal?

10/12/16 COP 3530: DATA STRUCTURES

Use “Guestimations” … 2
u  Guess that T(n) = O(n log n) ≤ c (n log n)

q  Then we know that T(n/2) ≤ c(n/2) log (n/2)

q  Right side
•  = 2(c(n/2) log (n/2)) + c1n
•  = cn (log n – 1) + c1n
•  = c (n log n) + (c1 – c)n

q  We can make right side ≤ c (n log n) by choosing c > c1

u  Thus T(n) = O(n log n) is the best solution among three
choices

10/12/16 COP 3530: DATA STRUCTURES

More general recurrences
u  T(n) = a T(n/b) + f(n)

q  T(n) = O(n log n), if a = b and f(n) = Θ(n)
q  T(n) = Θ(n{log

b
a}), if f(n) = O(n{log

b
a - ε})

10/12/16 COP 3530: DATA STRUCTURES

Important
Case

HeapSort
u  Discussed earlier

u  Time Complexity = O(n log n)

10/12/16 COP 3530: DATA STRUCTURES

QuickSort
u  Carefully divide, then conquer

u  First partition into Small and Large sets, then call
recursively on each of the sets and concatenate two
sorted sublists

u  Since we partition first, “merge” is not necessary; only
need to concatenate two sorted lists

10/12/16 COP 3530: DATA STRUCTURES

02/19/04 Lecture 12

Figure 8.10 Quicksort

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

02/19/04 Lecture 12

Figure 8.11 Partitioning algorithm: Pivot element 6 is placed at the end.

Figure 8.12 Partitioning algorithm: i stops at large element 8; j stops at small element 2.

Figure 8.13 Partitioning algorithm: The out-of-order elements 8 and 2 are swapped.

Figure 8.14 Partitioning algorithm: i stops at large element 9; j stops at small element 5.

Figure 8.15 Partitioning algorithm: The out-of-order elements 9 and 5 are swapped.

02/19/04 Lecture 12

Figure 8.16 Partitioning algorithm: i stops at large element 9; j stops at small element 3.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 8.17 Partitioning algorithm: Swap pivot and element in position i.

Figure 8.18 Original array

Figure 8.19 Result of sorting three elements (first, middle, and last)

Figure 8.20 Result of swapping the pivot with the next-to-last element

02/19/04 Lecture 12

Quicksort
public static <AnyType extends Comparable<? super AnyType>> void quicksort(AnyType [] a

 { quicksort(a, 0, a.length - 1); }

private static <AnyType extends Comparable<? super AnyType>>
void quicksort(AnyType [] a, int left, int right) {
 if(left + CUTOFF <= right) {
 AnyType pivot = median3(a, left, right);

 // Begin partitioning
 int i = left, j = right - 1;
 for(; ;) {
 while(a[++i].compareTo(pivot) < 0) { }
 while(a[--j].compareTo(pivot) > 0) { }
 if(i < j)
 swapReferences(a, i, j);
 else
 break;
 }
 swapReferences(a, i, right - 1); // Restore pivot
 quicksort(a, left, i - 1); // Sort small elements
 quicksort(a, i + 1, right); // Sort large elements
 }
 else // Do an insertion sort on the subarray
 insertionSort(a, left, right);
 }

9/25/08 COT 5407

Upper and Lower Bounds
u  Upper bound on time complexity of sorting is O(n log n),

because there exists at least one algorithm that runs in
time O(n log n) in the worst case.

u  But is this the best possible?

u  Lower bound on the time complexity of a problem is T(n)
if ∀ algorithms that solve the problem, their time
complexity is Ω(T(n)).

u  It can be mathematically proved that lower bound for
sorting is Ω(n log n).

u  Thus Merge Sort and Heap Sort are optimal.

Special Sorting Algorithms

10/12/16 COP 3530: DATA STRUCTURES

9/25/08 COT 5407

Bucket Sort
u  N integer values in the range [a..a+m-1]

u  For e.g., sort a list of 50 scores in the range [0..9].

u  Algorithm
q  Make m buckets [a..a+m-1]
q  As you read elements throw into appropriate bucket
q  Output contents of buckets [0..m] in that order

u  Time O(N+m)

u  Warning: This algorithm cannot be used for “infinite-precision”
real numbers, even if the range of values is specified.

9/25/08 COT 5407

Stable Sort
u  A sorting algorithm is stable if equal elements appear in

the same order in both the input and the output.

u  Which sorts are stable? Homework!

9/25/08 COT 5407

Radix Sort
3 5 9

3 5 7

3 5 1

7 3 9

3 3 6

7 2 0

3 5 5

3 5 9

3 5 7

3 5 1

3 3 6

3 5 5

7 3 9

7 2 0

Algorithm
for i = 1 to d do

sort array A on digit i using any sorting algorithm

Time Complexity: O((N+m) + (N+m2) + …+ (N+md))

3 3 6

3 5 9

3 5 7

3 5 1

3 5 5

7 2 0

7 3 9

3 3 6

3 5 1

3 5 5

3 5 7

3 5 9

7 2 0

8 3 9

Space Complexity: O(md)

9/25/08 COT 5407

Improved Radix Sort
3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Algorithm
for i = d to 1 do

sort array A on digit i using a stable sort algorithm

Time Complexity: O((n+m)d)

• Warning: This algorithm cannot be used for “infinite-precision”
real numbers, even if the range of values is specified.

9/25/08 COT 5407

Counting Sort
1 2 3 4 5 6 7 8
2 5 3 0 2 3 0 3

0 1 2 3 4 5

2 0 2 3 0 1

0 1 2 3 4 5

2 2 4 7 7 8

Initial Array

Counts

Cumulative
Counts

• Warning: This algorithm cannot be used for“infinite-precision”
real numbers, even if the range of values is specified.

Time Complexity: O(n+C)

Sorting Algorithms Summary
u  O(n2) sorting algorithms

q  Selection Sort
q  Insertion Sort
q  Bubble Sort & Shaker Sort

u  O(n2) sorting algorithms, but O(n log n) on average
q  Quick Sort

u  O(n2-) sorting algorithms
q  Shell Sort

u  O(n log n) sorting algorithms
q  Merge Sort
q  Heap Sort

u  O(n) specialized sorting algorithms
q  Bucket and Radix Sort
q  Counting Sort

10/12/16 COP 3530: DATA STRUCTURES

Visualizing Sorting

10/12/16 COP 3530: DATA STRUCTURES

9/25/08 COT 5407

Visualizing Algorithms 1

A

B

Position

Value

Unsorted Sorted

What algorithms are A and B?

9/25/08 COT 5407

Visualizing Algorithms 2 Position

Value

Unsorted Sorted

Visualizing Comparisons 3

9/25/08 COT 5407

Animations (Not sure which
work)

u  http://cg.scs.carleton.ca/~morin/misc/sortalg/

u  http://home.westman.wave.ca/~rhenry/sort/

u  time complexities on best, worst and average case

u  http://vision.bc.edu/~dmartin/teaching/sorting/anim-html/quick3.html

u  runs on almost sorted, reverse, random, and unique inputs; shows code
with invariants

u  http://www.brian-borowski.com/Sorting/

u  comparisons, movements & stepwise animations with user data

u  http://maven.smith.edu/~thiebaut/java/sort/demo.html

u  comparisons & data movements and step by step execution

9/25/08 COT 5407

Optional Topics
u  Lower Bound for Sorting

q  Needs to decide which of n! perms is the right answer
q  Each comparison can only separate two subsets and the

whole process requires Ω(log (n!))
q  Ω(n log n)

u  External Sorting Algorithms

10/12/16 COP 3530: DATA STRUCTURES

9/25/08 COT 5407

External Sorting Methods
u  Assumptions:

q  data is too large to be held in main memory;
q  data is read or written in blocks;
q  1 or more external devices available for sorting

u  Sorting in main memory is cheap or free

u  Read/write costs are the dominant cost

u  Wide variety of storage types and costs

u  No single strategy works for all cases

9/25/08 COT 5407

External Merge Sort
u  Initial distribution pass
u  Several multi-way merging passes
ASORTINGANDMERGINGEXAMPLEWITHFORTYFIVERECORDS.$
===

AOS.DMN.AEX.FHT.ERV.$
IRT.EGR.LMP.ORT.CEO.$
AGN.GIN.EIW.FIY.DRS.$
===

AAGINORST.FFHIORTTY.$
DEGGIMNNR.CDEEORRSV.$
AEEILMPWX.$
===

AAADEEEGGGIIILMMNNNOPRRSTWX.$
CDEEFFHIOORRRSTTVY.$
===

AAACDDEEEEEFFGGGHIIIILMMNNNOOOPRRRRRSSTTTWXY.$

===

With 2P external devices
Space for M records in main memory
Sorting N records needs
1 + logP(N/M) passes

