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Sorting 
u  Putting items in any order 

u  Items need to be “comparable” 

u  Need to know how to “compare” 

u  Results of compare need to be “definitive” (YES/NO/
EQUAL) 
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Complexity Measures 
u  Number of Comparisons made 

u  Number of Data Movements made 
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Inefficient Sorting Algorithms 
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Selection Sort 
u  Repeatedly select the next smallest item and place it in 

right location 

u  Invariant: After k iterations first k smallest items are 
in right location 

u  In iteration k, find smallest item in locations k .. n and 
swap it with item in location k 

u  Time complexity of iteration k is O(n-k) 

u  Total time complexity = (n-1) + (n-2) + … + 1 = O(n2) 

10/12/16 COP 3530: DATA STRUCTURES 



Insertion Sort 
u  Repeatedly insert next item into “growing” sorted list 

u  Invariant: After k iterations the first k locations are in 
sorted order 

u  In iteration k, insert item in location k into sorted 
sublist in locations 1 .. k-1 

u  Time complexity of iteration k is O(k) 

u  Total time complexity = 1 + 2 + … + (n-2) + (n-1) = O(n2) 
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Figure 8.3 
Basic action of insertion sort (the shaded part is sorted)
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Figure 8.4 
A closer look at the action of insertion sort (the dark shading indicates the 
sorted area; the light shading is where the new element was placed).
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Insertion Sort 
 public static <AnyType extends Comparable<? super AnyType>> 
    void insertionSort( AnyType [ ] a ) 
    { 
        int j; 
 
        for( int p = 1; p < a.length; p++ ) 
        { 
            AnyType tmp = a[ p ]; 
            for( j = p; j > 0 && tmp.compareTo( a[ j - 1 ] ) < 0; j-- ) 
                a[ j ] = a[ j - 1 ]; 
            a[ j ] = tmp; 
        } 
    } 



Bubble Sort 
u  Repeatedly bubble smaller items “upward” 

u  Invariant: After k iterations the first k locations are in 
sorted order 

u  In iteration k, scan entire list from end comparing 
adjacent items along the way and swapping if they are 
out of order 

u  Time complexity of iteration k is O(n) 

u  Total time complexity = n (n-1) = O(n2) 

10/12/16 COP 3530: DATA STRUCTURES 



02/19/04 Lecture 12 

ShellSort: Sophisticated Insertion Sort
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Figure 8.5 
Shellsort after each pass if the increment sequence is {1, 3, 5}

Idea: Make “sublists” and sort them using 
insertion sort
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ShellSort 
 public static <AnyType extends Comparable<? super AnyType>> 
    void shellsort( AnyType [ ] a ) 
    { 
        int j; 
 
        for( int gap = a.length / 2; gap > 0; gap /= 2 ) 
            for( int i = gap; i < a.length; i++ ) 
            { 
                AnyType tmp = a[ i ]; 
                for( j = i; j >= gap && 
                            tmp.compareTo( a[ j - gap ] ) < 0; j -= gap ) 
                    a[ j ] = a[ j - gap ]; 
                a[ j ] = tmp; 
            } 
    } 



Improved Sorting Algorithms 
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Divide and Conquer 
u  Divide the work into smaller subproblems by partitioning 

u  Sort each partition separately 

u  Merge sorted sublists 
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Merge Sort 
 public static <AnyType extends Comparable<? super AnyType>> 
    void mergeSort( AnyType [ ] a ) { 
        AnyType [ ] tmpArray = (AnyType[]) new Comparable[ a.length ]; 
        mergeSort( a, tmpArray, 0, a.length - 1 ); 
    } 

 private static <AnyType extends Comparable<? super AnyType>> 
    void mergeSort( AnyType [ ] a, AnyType [ ] tmpArray, 
               int left, int right ) 
    { 
        if( left < right ) 
        { 
            int center = ( left + right ) / 2; 
            mergeSort( a, tmpArray, left, center ); 
            mergeSort( a, tmpArray, center + 1, right ); 
            merge( a, tmpArray, left, center + 1, right ); 
        } 
    } 

Majority of work 
happens here in merge.  
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Merge in Merge Sort 
 private static <AnyType extends Comparable<? super AnyType>> 
 void merge( AnyType[ ] a, AnyType[ ] tmpArray, int leftPos, int rightPos, int rightEnd ) 
    { 
        int leftEnd = rightPos - 1; 
        int tmpPos = leftPos; 
        int numElements = rightEnd - leftPos + 1; 
        while( leftPos <= leftEnd && rightPos <= rightEnd ) 
            if( a[ leftPos ].compareTo( a[ rightPos ] ) < 0 ) 
                       tmpArray[ tmpPos++ ] = a[ leftPos++ ]; 
            else      
                        tmpArray[ tmpPos++ ] = a[ rightPos++ ]; 
        while( leftPos <= leftEnd )    // Copy rest of first half 
            tmpArray[ tmpPos++ ] = a[ leftPos++ ]; 
        while( rightPos <= rightEnd )  // Copy rest of right half 
            tmpArray[ tmpPos++ ] = a[ rightPos++ ]; 
 
       for( int i = 0; i < numElements; i++, rightEnd-- ) 
            a[ rightEnd ] = tmpArray[ rightEnd ]; 
    } 

Time Complexity: 
O(La + Lb) 



Analysis: Recursion Tree 
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Alternative Analysis 
u  Let T(n) = time complexity of MergeSort on list with n 

elements 

u  We know that time complexity of merge operation on 
two sorted lists of total length n is O(n) 

u  We can write a recurrence relationship as follows: 
q  T(n) = T(n/2) + T(n/2) + O(n) 
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T(n) = 2T(n/2) + O(n) 
u  Expansion Method: 

T(n) = 2T(n/2) + O(n) 
T(n) ≤ 2T(n/2) + cn 
T(n) ≤ 2(2T(n/4) + cn/2) + cn 
T(n) ≤ 4T(n/4) + 2cn 
T(n) ≤ 4(2T(n/8) + cn/4) + 2cn 
T(n) ≤ 8T(n/8) + 3cn 
… 
T(n) ≤ nT(1) + (log n) cn 
T(n) = O(n log n) 
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Use “Guestimations” 
u  Guess that T(n) = O(n) ≤ cn 

q  Then we know that T(n/2) = cn/2 
q  Right side = 2(cn/2) + c1n = cn + c1n 
q  Since both c and c1 > 0, we cannot make right side ≤ cn 
q  Failure! 

u  Guess that T(n) = O(n2) ≤ cn2 

q  Then we know that T(n/2) ≤ c(n/2)2 

q  Right side = 2(cn2/4) + c1n = cn2/2 + c1n  
q  We can make right side ≤ cn2 by choosing c large enough 
q  But was our choice too liberal? 
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Use “Guestimations” … 2 
u  Guess that T(n) = O(n log n) ≤ c (n log n) 

q  Then we know that T(n/2) ≤ c(n/2) log (n/2) 

q  Right side  
•  = 2(c(n/2) log (n/2)) + c1n  
•  = cn (log n – 1) + c1n  
•  = c (n log n) + (c1 – c)n 

q  We can make right side ≤ c (n log n) by choosing c > c1 

u  Thus T(n) = O(n log n) is the best solution among three 
choices 
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More general recurrences 
u  T(n) = a T(n/b) + f(n) 

q  T(n) = O(n log n), if a = b and f(n) = Θ(n) 
q  T(n) = Θ(n{log 

b
a}), if f(n) = O(n{log 

b
a - ε}) 
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Important 
Case 



HeapSort 
u  Discussed earlier 

u  Time Complexity = O(n log n) 
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QuickSort 
u  Carefully divide, then conquer 

u  First partition into Small and Large sets, then call 
recursively on each of the sets and concatenate two 
sorted sublists 

u  Since we partition first, “merge” is not necessary; only 
need to concatenate two sorted lists 
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Figure 8.10   Quicksort 
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Figure 8.11  Partitioning algorithm: Pivot element 6 is placed at the end.

Figure 8.12  Partitioning algorithm: i stops at large element 8; j stops at small element 2.

Figure 8.13  Partitioning algorithm: The out-of-order elements 8 and 2 are swapped.

Figure 8.14  Partitioning algorithm: i stops at large element 9; j stops at small element 5.

Figure 8.15  Partitioning algorithm: The out-of-order elements 9 and 5 are swapped.
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Figure 8.16  Partitioning algorithm: i stops at large element 9; j stops at small element 3.
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Figure 8.17  Partitioning algorithm: Swap pivot and element in position i.

Figure 8.18  Original array

Figure 8.19  Result of sorting three elements (first, middle, and last)

Figure 8.20  Result of swapping the pivot with the next-to-last element
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Quicksort 
public static <AnyType extends Comparable<? super AnyType>> void quicksort(AnyType [ ] a  

 {  quicksort( a, 0, a.length - 1 );  } 

private static <AnyType extends Comparable<? super AnyType>> 
void quicksort(AnyType [ ] a, int left, int right ) { 
        if( left + CUTOFF <= right )  { 
            AnyType pivot = median3( a, left, right ); 

             // Begin partitioning 
            int i = left, j = right - 1; 
            for( ; ; ) { 
                while( a[ ++i ].compareTo( pivot ) < 0 ) { } 
                while( a[ --j ].compareTo( pivot ) > 0 ) { } 
                if( i < j ) 
                    swapReferences( a, i, j ); 
                else 
                    break; 
            } 
            swapReferences( a, i, right - 1 );   // Restore pivot 
            quicksort( a, left, i - 1 );    // Sort small elements 
            quicksort( a, i + 1, right );   // Sort large elements 
        } 
        else  // Do an insertion sort on the subarray 
            insertionSort( a, left, right ); 
    } 
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Upper and Lower Bounds 
u  Upper bound on time complexity of sorting is O(n log n), 

because there exists at least one algorithm that runs in 
time O(n log n) in the worst case.  

u  But is this the best possible? 

u  Lower bound on the time complexity of a problem is T(n) 
if ∀ algorithms that solve the problem, their time 
complexity is Ω(T(n)). 

u  It can be mathematically proved that lower bound for 
sorting is Ω(n log n).  

u  Thus Merge Sort and Heap Sort are optimal. 



Special Sorting Algorithms 
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Bucket Sort 
u  N integer values in the range [a..a+m-1] 

u  For e.g., sort a list of 50 scores in the range [0..9]. 

u  Algorithm 
q  Make m buckets [a..a+m-1] 
q  As you read elements throw into appropriate bucket 
q  Output contents of buckets [0..m] in that order 

u  Time O(N+m) 

u  Warning: This algorithm cannot be used for “infinite-precision” 
real numbers, even if the range of values is specified.  
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Stable Sort 
u  A sorting algorithm is stable if equal elements appear in 

the same order in both the input and the output. 

u  Which sorts are stable? Homework! 
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Radix Sort 
3 5 9

3 5 7

3 5 1

7 3 9

3 3 6

7 2 0

3 5 5

3 5 9

3 5 7

3 5 1

3 3 6

3 5 5

7 3 9

7 2 0

Algorithm
for i = 1 to d do

sort array A on digit i using any sorting algorithm 

Time Complexity: O((N+m) + (N+m2) + …+ (N+md))

3 3 6

3 5 9

3 5 7

3 5 1

3 5 5

7 2 0

7 3 9

3 3 6

3 5 1

3 5 5

3 5 7

3 5 9

7 2 0

8 3 9

Space Complexity: O(md)
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Improved Radix Sort 
3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Algorithm
for i = d to 1 do

sort array A on digit i using a stable sort algorithm 

Time Complexity: O((n+m)d)

• Warning: This algorithm cannot be used for “infinite-precision” 
real numbers, even if the range of values is specified.  
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Counting Sort 
1 2 3 4 5 6 7 8 
2 5 3 0 2 3 0 3 

0 1 2 3 4 5 

2 0 2 3 0 1 

0 1 2 3 4 5 

2 2 4 7 7 8 

Initial Array 

Counts 

Cumulative 
Counts 

• Warning: This algorithm cannot be used for“infinite-precision” 
real numbers, even if the range of values is specified.  
 

Time Complexity: O(n+C)



Sorting Algorithms Summary 
u  O(n2) sorting algorithms 

q  Selection Sort 
q  Insertion Sort 
q  Bubble Sort & Shaker Sort 

u  O(n2) sorting algorithms, but O(n log n) on average 
q  Quick Sort 

u  O(n2-) sorting algorithms 
q  Shell Sort 

u  O(n log n) sorting algorithms 
q  Merge Sort 
q  Heap Sort 

u  O(n) specialized sorting algorithms 
q  Bucket and Radix Sort 
q  Counting Sort 

10/12/16 COP 3530: DATA STRUCTURES 



Visualizing Sorting 
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Visualizing Algorithms 1 

A 

B 

Position

Value

Unsorted Sorted

What algorithms are A and B? 
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Visualizing Algorithms 2 Position

Value

Unsorted Sorted



Visualizing Comparisons 3 
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Animations (Not sure which 
work) 

u  http://cg.scs.carleton.ca/~morin/misc/sortalg/   

u  http://home.westman.wave.ca/~rhenry/sort/  

u  time complexities on best, worst and average case 

u  http://vision.bc.edu/~dmartin/teaching/sorting/anim-html/quick3.html  

u  runs on almost sorted, reverse, random, and unique inputs; shows code 
with invariants 

u  http://www.brian-borowski.com/Sorting/  

u  comparisons, movements & stepwise animations with user data 

u  http://maven.smith.edu/~thiebaut/java/sort/demo.html  

u  comparisons & data movements and step by step execution 
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Optional Topics 
u  Lower Bound for Sorting 

q  Needs to decide which of n! perms is the right answer 
q  Each comparison can only separate two subsets and the 

whole process requires Ω(log (n!)) 
q  Ω(n log n) 

u  External Sorting Algorithms 
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External Sorting Methods 
u  Assumptions:  

q  data is too large to be held in main memory;  
q  data is read or written in blocks;  
q  1 or more external devices available for sorting 

u  Sorting in main memory is cheap or free 

u  Read/write costs are the dominant cost  

u  Wide variety of storage types and costs 

u  No single strategy works for all cases 
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External Merge Sort 
u  Initial distribution pass  
u  Several multi-way merging passes 
ASORTINGANDMERGINGEXAMPLEWITHFORTYFIVERECORDS.$ 
========================================================================================================= 

AOS.DMN.AEX.FHT.ERV.$ 
IRT.EGR.LMP.ORT.CEO.$ 
AGN.GIN.EIW.FIY.DRS.$ 
========================================================================================================= 

AAGINORST.FFHIORTTY.$ 
DEGGIMNNR.CDEEORRSV.$ 
AEEILMPWX.$ 
========================================================================================================= 

AAADEEEGGGIIILMMNNNOPRRSTWX.$ 
CDEEFFHIOORRRSTTVY.$ 
========================================================================================================= 

AAACDDEEEEEFFGGGHIIIILMMNNNOOOPRRRRRSSTTTWXY.$ 

========================================================================================================= 

With 2P external devices 
Space for M records in main memory 
Sorting N records needs 
1 + logP(N/M) passes 


