
Data Structures
Giri Narasimhan

Office: ECS 254A
Phone: x-3748
giri@cs.fiu.edu

03/11/04 Lecture 18

Graphs
u Graphs model networks of various

kinds: roads, highways, oil pipelines,
airline routes, dependency
relationships, etc.

u Graph G(V,E)
u V Vertices or Nodes
u E Edges or links connect vertices
u Directed vs. Undirected edges

Graph Representations
u  Adjacency Matrix

u  Adjacency List

10/12/16 COP 3530: DATA STRUCTURES

03/11/04 Lecture 18

Vertex and Edge classes
Class Edge {
 public Vertex dest;
 public double weight;

 public Edge (Vertex d,

 double w) {
 dest = d;
 weight = w;

 }
}

Class Vertex {
 public String Name;
 public AnyType extraInfo;
 public List adj;
 public int dist; // double?
 public Vertex prev;
 public Vertex (String s) {
 Name = s;
 adj = new LinkedList();
 reset();
 }
 public reset () {
 dist=INFNT; path=null;
 }
}

10/12/16 COP 3530: DATA STRUCTURES

03/11/04 Lecture 18

Graphs
u Graphs can be augmented to

store extra info (e.g., city
population, oil flow capacity, etc.)

u Weighted vs. Unweighted
u Paths and Cycles

03/11/04 Lecture 18

Figure 14.1
A directed graph.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.2
Adjacency list representation of the graph shown in Figure 14.1; the nodes in
list i represent vertices adjacent to i and the cost of the connecting edge.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Adjacency Lists
u  Constructing adjacency lists

q  Input: list of edges
q  Output: adjacency list for all vertices
q  Time: O(L), where L is length of list of edges.

u  Check if edge exists
q  Input: edge (u,v)
q  Output: does the edge exist in the graph G?
q  Time: O(du), where du is the number of entries in u’s

adjacency list. In the worst case it is O(N), where N is
the number of vertices

u  Need a MAP data structure to map vertex name or
ID to (internal) vertex number.

03/11/04 Lecture 18

Figure 14.33
An activity-node graph

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Topological Sort Example

11/17/2016 Bookshelf Online: Data Structures and Algorithm Analysis in Java

https://bookshelf.vitalsource.com/#/books/9780133465013/cfi/6/32!/4/2/6/4/18/2@0:70.9 1/2

Figure 9.3 An acyclic graph representing course prerequisite structure

Figure 9.4 An acyclic graph

PRINTED BY: irvinek@cs.fiu.edu. Printing is for personal, private use only. No part of this book may be reproduced or
transmitted without publisher's prior permission. Violators will be prosecuted.

10/12/16 COP 3530: DATA STRUCTURES

03/11/04 Lecture 18

Figure 14.30A
A topological sort. The conventions are the same as those in Figure 14.21
(continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.30B
A topological sort. The conventions are the same as those in
Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.31A
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21 (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.31B
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Topological Sort
void topSort () {

 for(int j = 0; j < N; j++) {
 Vertex v = findVertexOfIndegZero();
 if (v == null)
 return; // Cycle found
 v.topologicalNum = j;
 for each vertex w adjacent to v
 w.inDegree--; // use extraInfo field
 }

}
10/12/16 COP 3530: DATA STRUCTURES Time Complexity = O(n + m)

03/11/04 Lecture 18

Shortest Paths
u Suppose we are interested in the shortest

paths (and their lengths) from vertex
“Miami” to all other vertices in the
graph.

u We need to augment the data structure to
store this information.

03/11/04 Lecture 18

Figure 14.4
An abstract scenario of the data structures used in a shortest-path
calculation, with an input graph taken from a file. The shortest weighted path
from A to C is A to B to E to D to C (cost is 76).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.21A
Searching the graph in the unweighted shortest-path computation. The
darkest-shaded vertices have already been completely processed, the
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to
bottom, as numbered (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.21B
Searching the graph in the unweighted shortest-path computation. The
darkest-shaded vertices have already been completely processed, the
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to
bottom, as numbered.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.16
The graph, after the starting vertex has been marked as reachable in zero
edges

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.17
The graph, after all the vertices whose path length from the starting vertex is
1 have been found

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.18
The graph, after all the vertices whose shortest path from the starting vertex
is 2 have been found

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.19
The final shortest paths

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.20
If w is adjacent to v and there is a path to v, there also is a path to w

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Unweighted SP algorithm
Void BFS (Vertex s) { // same as unweighted SP
 Queue <Vertex> Q = new Queue <>;
 for each Vertex v except s { v.dist = INFNT;}
 s.dist = 0; s.prev = null;
 Q.enqueue(s);
 while (!Q.isEmpty()) {

 v = Q.dequeue();
 for each vertex w adjacent to v
 if (w.dist == INFNT) {
 w.dist = v.dist + 1;
 w.prev = v;
 Q.enqueue(w);
 }

 }
}

10/12/16 COP 3530: DATA STRUCTURES Time Complexity = O(n + m)

03/11/04 Lecture 18

Figure 14.23
The eyeball is at v and w is adjacent, so Dw should be lowered to 6.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.24
If Dv is minimal among all unseen vertices and if all edge costs are
nonnegative, Dv represents the shortest path.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.25A
Stages of Dijkstra’s algorithm. The conventions are the same as those in
Figure 14.21 (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.25B
Stages of Dijkstra’s algorithm. The conventions are the same as those in
Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Dijkstra’s SP algorithm
void Dijkstra (Vertex s) { // same as weighted SP
 PriorityQueue <Vertex> Q = new PriorityQueue <>;
 for each Vertex v except s { v.dist = INFNT; Q.insert(v); }
 s.dist = 0; s.prev= null;
 Q.insert(s);
 while (!Q.isEmpty()) {

 v = Q.deleteMin();
 for each vertex w adjacent to v
 if (w.dist > v.dist + weight of edge (v,w)) {
 w.dist = v.dist + weight of edge (v,w);
 w.prev= v;
 Q.updatePriority(w, v.dist + weight of edge (v,w));
 }

 }
}

10/12/16 COP 3530: DATA STRUCTURES Time Complexity = O(n log n + m + m log n) = O(m log n)

03/11/04 Lecture 18

Figure 14.28
A graph with a negative-cost cycle

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18

Figure 14.38
Worst-case running times of various graph algorithms

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

