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Graphs 
u Graphs model networks of various 

kinds: roads, highways, oil pipelines, 
airline routes, dependency 
relationships, etc. 

u Graph G(V,E) 
u V Vertices or Nodes 
u E Edges or links connect vertices 
u Directed vs. Undirected edges 



Graph Representations 
u  Adjacency Matrix  

u  Adjacency List 
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Vertex and Edge classes 
Class Edge { 
    public Vertex dest; 
    public double weight; 
 
    public Edge (Vertex d,  

  double w) { 
 dest = d; 
 weight = w; 

    } 
} 

Class Vertex { 
    public String Name; 
    public AnyType extraInfo; 
    public List adj;  
    public int dist; // double? 
    public Vertex prev; 
    public Vertex (String s) { 
        Name = s;  
        adj = new LinkedList(); 
        reset(); 
    } 
    public reset () { 
        dist=INFNT; path=null;  
    } 
} 
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Graphs 
u Graphs can be augmented to 

store extra info (e.g., city 
population, oil flow capacity, etc.) 

u Weighted vs. Unweighted  
u Paths and Cycles 
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Figure 14.1 
A directed graph.
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Figure 14.2 
Adjacency list representation of the graph shown in Figure 14.1; the nodes in 
list i represent vertices adjacent to i and the cost of the connecting edge.

Data Structures & Problem Solving using JAVA/2E       Mark Allen Weiss      © 2002  Addison Wesley 



03/11/04 Lecture 18 

Adjacency Lists 
u  Constructing adjacency lists 

q  Input: list of edges 
q  Output: adjacency list for all vertices 
q  Time: O(L), where L is length of list of edges. 

u  Check if edge exists 
q  Input: edge (u,v) 
q  Output: does the edge exist in the graph G? 
q  Time: O(du), where du is the number of entries in u’s 

adjacency list. In the worst case it is O(N), where N is 
the number of vertices 

u  Need a MAP data structure to map vertex name or 
ID to (internal) vertex number. 
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Figure 14.33 
An activity-node graph
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Topological Sort Example 

11/17/2016 Bookshelf Online: Data Structures and Algorithm Analysis in Java

https://bookshelf.vitalsource.com/#/books/9780133465013/cfi/6/32!/4/2/6/4/18/2@0:70.9 1/2

Figure 9.3 An acyclic graph representing course prerequisite structure

Figure 9.4 An acyclic graph
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Figure 14.30A 
A topological sort. The conventions are the same as those in Figure 14.21 
(continued). 
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Figure 14.30B 
A topological sort. The conventions are the same as those in  
Figure 14.21.
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Figure 14.31A 
The stages of acyclic graph algorithm. The conventions are the same as 
those in Figure 14.21 (continued).
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Figure 14.31B 
The stages of acyclic graph algorithm. The conventions are the same as 
those in Figure 14.21. 
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Topological Sort 
void topSort () { 

 for( int j = 0; j < N; j++) { 
  Vertex v = findVertexOfIndegZero(); 
  if (v == null)  
   return; //  Cycle found 
  v.topologicalNum = j; 
  for each vertex w adjacent to v 
   w.inDegree--; // use extraInfo field 
 } 

}  
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Shortest Paths 
u Suppose we are interested in the shortest 

paths (and their lengths) from vertex 
“Miami”  to all other vertices in the 
graph.  

u We need to augment the data structure to 
store this information.  
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Figure 14.4 
An abstract scenario of the data structures used in a shortest-path 
calculation, with an input graph taken from a file. The shortest weighted path 
from A to C is A to B to E to D to C (cost is 76).
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Figure 14.21A 
Searching the graph in the unweighted shortest-path computation. The 
darkest-shaded vertices have already been completely processed, the 
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to 
bottom, as numbered (continued). 
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Figure 14.21B 
Searching the graph in the unweighted shortest-path computation. The 
darkest-shaded vertices have already been completely processed, the 
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to 
bottom, as numbered. 
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Figure 14.16 
The graph, after the starting vertex has been marked as reachable in zero 
edges
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Figure 14.17 
The graph, after all the vertices whose path length from the starting vertex is 
1 have been found
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Figure 14.18 
The graph, after all the vertices whose shortest path from the starting vertex 
is 2 have been found
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Figure 14.19 
The final shortest paths
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Figure 14.20 
If w is adjacent to v and there is a path to v, there also is a path to w 

Data Structures & Problem Solving using JAVA/2E       Mark Allen Weiss      © 2002  Addison Wesley 



Unweighted SP algorithm 
Void BFS (Vertex s) { // same as unweighted SP 
    Queue <Vertex> Q = new Queue <>; 
    for each Vertex v except s { v.dist = INFNT;} 
    s.dist = 0; s.prev = null; 
    Q.enqueue(s);  
    while ( !Q.isEmpty() ) {  

 v = Q.dequeue();  
 for each vertex w adjacent to v  
     if (w.dist == INFNT) { 
  w.dist = v.dist + 1;  
  w.prev = v; 
  Q.enqueue(w); 
     } 

    } 
} 
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Figure 14.23 
The eyeball is at v and w is adjacent, so Dw should be lowered to 6.
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Figure 14.24 
If Dv is minimal among all unseen vertices and if all edge costs are 
nonnegative, Dv represents the shortest path. 
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Figure 14.25A 
Stages of Dijkstra’s algorithm. The conventions are the same as those in  
Figure 14.21 (continued).
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Figure 14.25B 
Stages of Dijkstra’s algorithm. The conventions are the same as those in  
Figure 14.21. 
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Dijkstra’s SP algorithm 
void Dijkstra (Vertex s) { // same as weighted SP 
    PriorityQueue <Vertex> Q = new PriorityQueue <>; 
    for each Vertex v except s { v.dist = INFNT; Q.insert(v); } 
    s.dist = 0; s.prev= null;  
    Q.insert(s);  
    while ( !Q.isEmpty() ) {  

 v = Q.deleteMin();  
 for each vertex w adjacent to v  
     if (w.dist > v.dist + weight of edge (v,w)) { 
  w.dist = v.dist + weight of edge (v,w);  
  w.prev= v; 
  Q.updatePriority(w, v.dist + weight of edge (v,w)); 
     } 

    } 
} 
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Figure 14.28 
A graph with a negative-cost cycle
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Figure 14.38 
Worst-case running times of various graph algorithms
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