
Data Structures
Giri Narasimhan

Office: ECS 254A
Phone: x-3748
giri@cs.fiu.edu

03/11/04 Lecture 18

Depth-First Search
u  Preorder traversal

q  Start at some vertex, v
q  Recursively traverse all vertices adjacent to v

u  DFS: Generalization of above for arbitrary graphs
q  Start at some vertex, v
q  Recursively traverse all unvisited vertices adjacent to v
q  We assume that for undirected graphs every edge (v, w)

appears twice in adjacency lists: as (v, w) and as (w, v)

10/12/16 COP 3530: DATA STRUCTURES

DFS Pseudocode
void dfs (Vertex v) {

 v.visited = true;
 for each Vertex w adjacent to v
 if (!w.visited)
 dfs(w);

}

10/12/16 COP 3530: DATA STRUCTURES

DFS Improved Pseudocode
void DFS (Vertex s) {

 DFScount = 1;
 s.DFSnum = DFScount;
 dfs(s);

}
void dfs (Vertex v) {

 v.visited = true;
 v.DFSnum = DFScount++;
 processVertex(v);
 for each Vertex w adjacent to v {
 processEdge(v,w);
 if (!w.visited)
 dfs(w);
 }

}

10/12/16 COP 3530: DATA STRUCTURES

Connected Components
u  Given an undirected graph G(V,E), a connected

component is a maximal connected subgraph such that
there is a path between any pair of vertices.

u  How to compute all connected components
q  Perform DFS or BFS from arbitrary vertex v
q  All visited vertices and edges are in the same component
q  If all vertices have not been visited then
•  restart from unvisited vertex

q  Number of connected components = number of starts
q  Directed graphs need a different strategy

10/12/16 COP 3530: DATA STRUCTURES

Relations
u  A relation R is defined on a set S if

q  for every pair of elements (a, b), a, b ∊ S, aRb is either true or
false.

u  An equivalence relation is a relation R that satisfies:
q  (Reflexive) aRa, for all a ∊ S.
q  (Symmetric) aRb if and only if bRa.
q  (Transitive) aRb and bRc implies that aRc.

u  Examples:
q  The ≤ relationship is
•  reflexive, transitive, not symmetric; not equivalence

q  Electrical connectivity is
•  an equivalence relation – reflexive, symmetric, and transitive

u  Related : aRb; Equivalence Class : aEb

10/12/16 COP 3530: DATA STRUCTURES

Dynamic Equivalence Relation
u  Given n entities, we want to dynamically maintain a set of

(equivalence) relationships

u  We need data structure DisjointSet with 2 operations
q  find(a): returns the equivalence class for a
q  union(a, b): adds a relationship between a and b, if needed

10/12/16 COP 3530: DATA STRUCTURES

11/22/2016 Bookshelf Online: Data Structures and Algorithm Analysis in Java

https://bookshelf.vitalsource.com/#/books/9780133465013/cfi/6/30!/4/2/6/6/10/2@0:5.39 1/2

Figure 8.1 Eight elements, initially in different sets

Figure 8.2 After union(4,5)

Figure 8.3 After union(6,7)

of element i. If i is a root, then s[i] = −1. In the forest in Figure 8.1 , s[i] = −1 for 0
≤ i < 8. As with binary heaps, we will draw the trees explicitly, with the understanding that an
array is being used. Figure 8.1 shows the explicit representation. We will draw the root’s
parent link vertically for convenience.

To perform a union of two sets, we merge the two trees by making the parent link of one
tree’s root link to the root node of the other tree. It should be clear that this operation takes
constant time. Figures 8.2 , 8.3 , and 8.4 represent the forest after each of
union(4,5), union(6,7), union(4,6), where we have adopted the convention that

PRINTED BY: irvinek@cs.fiu.edu. Printing is for personal, private use only. No part of this book may be reproduced or
transmitted without publisher's prior permission. Violators will be prosecuted.

10/12/16 COP 3530: DATA STRUCTURES

Union(4,6)
11/22/2016 Bookshelf Online: Data Structures and Algorithm Analysis in Java

https://bookshelf.vitalsource.com/#/books/9780133465013/cfi/6/30!/4/2/6/6/20/4/2/2/4/2@0:26.6 1/2

Figure 8.5 Implicit representation of previous tree

Figure 8.4 After union(4,6)

Figure 8.6 Disjoint set class skeleton

 1 public class DisjSets
 2 {
 3 public DisjSets(int numElements)
 4 { /* Figure 8.7 */ }
 5 public void union(int root1, int root2)
 6 { /* Figures 8.8 and 8.14 */ }
 7 public int find(int x)
 8 { /* Figures 8.9 and 8.16 */ }
 9
10 private int [] s;
11 }

The code in Figures 8.6 through 8.9 represents an implementation of the basic

algorithm, assuming that error checks have already been performed. In our routine, unions
are performed on the roots of the trees. Sometimes the operation is performed by passing

any two elements, and having the union perform two finds to determine the roots.

PRINTED BY: irvinek@cs.fiu.edu. Printing is for personal, private use only. No part of this book may be reproduced or
transmitted without publisher's prior permission. Violators will be prosecuted.

10/12/16 COP 3530: DATA STRUCTURES

Disjoint Sets interface
public class DisjSets {

public DisjSets (int numElements) // Figure 8.7
public void union (int root1, int root2) // Figs 8.8, 8.14
public int find (int x) // Figs 8.9, 8.16

}

public int find(int x) { // s[x] is height of tree rooted at x
 if (s[x] < 0) return x;
 else return find(s[x]);

}
public void union(int root1, int root2) {

 s[root2] = root1;
}

10/12/16 COP 3530: DATA STRUCTURES

Improvements
u  Height heuristic

q  If 2 disjoint sets are to be unioned, then always make the
root of the taller tree to be root of entire tree.

public void union (int root1, int root2) {
 if (s[root2] < s[root1]) s[root1] = root2;
 else {
 if (s[root1] == s[root2]) s[root1]--;
 s[root2] = root1;
 }

}
u  Depth of trees is at most O(log n)
u  M operations take O(M log n)

10/12/16 COP 3530: DATA STRUCTURES

2nd Improvement
u  Path Compression

q  Every time a find operation is performed on node x, all
vertices along the path form x to its root are connected
directly to the root, thus compressing the paths that have
been recently visited

q  Time Complexity = O(M log*n) = O(M α(n))

10/12/16 COP 3530: DATA STRUCTURES

