Data Structures

Giri Narasimhan
Office: ECS 254A
Phone: x-3748

~ giri@cs.fiu.edu

1273 w415

{ 1 {00 POl

@—@ 2 ”e"+l:a|+l4]/1 2 CE O

3 2| a2l 3]0 1 01 0

‘.9 4 _H5|_H3{/| 410 11 0 1

& @ s | =plAlHIT 2]/ 2 LR 1e0 10
@) (b) (©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five
vertices and seven edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix rep-
resentation of G.

2y 3n 4506
INEORST ST 0 5 0
2R OO R O
SAEOSUIS O & () ST]
4(0 1 0 0 0 O
S OO 0= 0
6/0 0 0 0 0 1

(@) (b) (c)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices
and eight edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.

Lecture 18

03/11/04

Depth-First Search

® Preorder traversal

a
a

Start at some vertex, v
Recursively traverse all vertices adjacent to v

¢ DFS: Generalization of above for arbitrary graphs

a
Q
4

Start at some vertex, v
Recursively traverse all unvisited vertices adjacent to v

We assume that for undirected graphs every edge (v, w)
appears twice in adjacency lists: as (v, w) and as (w, v)

COP 3530: DATA STRUCTURES 10/12/16

DFS Pseudocode

void dfs (Vertex v) {
v.visited = frue;
for each Vertex w adjacent to v
if (lw.visited)
dfs(w);

COP 3530: DATA STRUCTURES 10/12/16

DFS Improved Pseudocode

void DFS (Vertex s) {
DFScount = 1;
s.DFSnum = DF Scount;
\ dfs(s);

void dfs (Vertex v) {
v.visited = true;
v.DFSnum = DF Scount++;
processVertex(v);
for each Vertex w adjacent to v {
processEdge(v,w);
If (lw.visited)
dfs(w);

COP 3530: DATA STRUCTURES 10/12/16

Connected Components

¢ Given an undirected graph G(V,E), a connected
component is a maximal connected subgraph such that
there is a path between any pair of vertices.

¢ How to compute all connected components

4
d
a

=

Perform DFS or BFS from arbitrary vertex v

All visited vertices and edges are in the same component
If all vertices have not been visited then

® restart from unvisited vertex

Number of connected components = number of starts
Directed graphs need a different strategy

COP 3530: DATA STRUCTURES 10/12/16

4

4

L 4

Relations

A relation R is defined ona set S if

O for every pair of elements (a, b), a, b € S, aRb is either true or

false.
An equivalence relation is a relation R that satisfies:
Q (Reflexive) aRa, forall a € S.
O (Symmetric) aRb if and only if bRa.
O (Transitive) aRb and bRc implies that aRc.
Examples:
Q The < relationship is
® reflexive, transitive, not symmeftric; not equivalence
O Electrical connectivity is

® an equivalence relation - reflexive, symmetric, and transitive

Related : aRb; Equivalence Class : aEb

COP 3530: DATA STRUCTURES

10/12/16

Dynamic Equivalence Relation

® Given n entities, we want to dynamically maintain a set of
(equivalence) relationships

¢ We need data structure DisjointSet with 2 operations
Q find(a): returns the equivalence class for a
O union(a, b): adds a relationship between a and b, if needed

COP 3530: DATA STRUCTURES 10/12/16

bobdbddd

Figure 8.1 Eight elements, initially in different sets

éééé@@éé

Figure 8.2 After union(4,5)

éééédbéb

Figure 8.3 After union(6,7)

Union(4,6)

Disjoint Sets interface

public class DisjSets {
public DisjSets (int numElements) // Figure 8.7
public void union (int rootl, int root2) // Figs 8.8, 8.14
public int find (int x) // Figs 8.9, 8.16

}

public int find(int x) { // s[x] is height of tree rooted at x
if (s[x] < O) return x;
else return find(s[x]);

}

public void union(int rootl, int root2) {
s[root2] = rootl;
}

COP 3530: DATA STRUCTURES 10/12/16

Improvements

¢ Height heuristic

Q If 2 disjoint sets are to be unioned, then always make the
root of the taller tree to be root of entire tree.

public void union (int root1, int root2) {
if (s[root2]< s[root1]) s[rootl] = root2;

else {
if (s[rootl] == s[root2]) s[rootl]--;

s[root2] = rootl;

}

}
¢ Depth of trees is at most O(log n)

¢ M operations take O(M log n)

COP 3530: DATA STRUCTURES 10/12/16

2"d Tmprovement

¢ Path Compression

O Every time a find operation is performed on node x, all
vertices along the path form x to its root are connected
directly to the root, thus compressing the paths that have
been recently visited

O Time Complexity = O(M log*n) = O(M a(n))

COP 3530: DATA STRUCTURES 10/12/16

