
COP 3337 Test 3 NAME_________________

Part 1: Selection Sort

The SelectionSorter class
implements a selection sort on an
array of strings. It is missing the
minimumPosition() method that
returns the index position of the
smallest element in the array.

1. (10 points) Complete the coding
of the minimumPosition method in
the box below:

01 - (Irvine, Spring 2002)
class SelectionSorter
{
 public SelectionSorter(String[] anArray)
 {
 array = anArray;
 }

 public void sort()
 {
 for (int i = 0; i < array.length - 1; i++)
 {
 int minPos = minimumPosition(i);
 swap(minPos, i);
 }
 }

 private void swap(int i, int j)
 {
 String temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }

 private String[] array;
}
private int minimumPosition(int from)
{

}
 1

 2. (5 points) If we found that 10,000 strings items could be sorted by a
selection sort in 5 seconds, how many seconds would it take to sort
100,000 items? (This is an O(n2) algorithm.)

 3. (5 points) The Merge sort is an O(n log n) algorithm. If an array of
2000 items could be sorted in 500 milliseconds, about how many
milliseconds would be required to sort an array of 10,000 items?

Part 2: Binary Search

The BinarySearcher class in the
box to the right implements a
binary search on an array of
integers. The search method finds
a value in a sorted array, using the
binary search algorithm. Input
parameter: v = the value to search.
Returns the index at which the
value occurs, or –1 if it does not
occur in the array.

1. (10 points) Rewrite and correct
the lines in the shaded area. Write
your corrected version in the box at
the bottom of this page.

public class BinarySearcher
{
 public BinarySearcher(int[] anArray)
 {
 array = anArray;
 }

 public int search(int v)
 {
 int low = 0;
 int high = array.length - 1;
 while (low <= high)
 {
 int mid = (low + high) / 2;
 int diff = array[mid] - v;

 }
 return -1;
 }
 private int[] array;
}

if (diff == 0)
 return mid;
else if (diff < 0)
 high = mid + 1;
else
 low = mid - 1;

01 - (Irvine, Spring 2002) 2

2. (5 points) Suppose you want to use a Binary search on an array of objects that support the
Comparable interface. Complete the search() method in the following box so that Comparable objects
can be searched. (note: Comparable has both compareTo() and equals() methods.)

public int search(Comparable v)
{
 int low = 0;
 int high = a.length - 1;
 while (low <= high)
 {
 int mid = (low + high) / 2;

 if(a[mid].equals(v))
 return mid;
 else if (a[mid].compareTo(v) < 0)
 low = mid + 1;
 else
 high = mid - 1;

 }
 return -1;
}

Part 3: Java Collection Classes

1. (10 points) Write statements that do the following: Declare an ArrayList named myList. Create an
Iterator named I for myList. Write a loop that displays myList on the console in reverse order, using
the Iterator I to traverse the array.

01 - (Irvine, Spring 2002) 3

2. (3 points each) Write Java statements that do the following.
a. Declare a LinkedList object named myList:

b. Create a ListIterator object named iter that references myList:

c. Add the name "Adam" to the beginning of myList:

e. Add the name "Steve" to the end of myList:

f. Insert "Bill" at index position 1 in myList:

g. Write a single statement that displays "yes" on the console if the name "Steve" can be found in

the list. Do not use a loop:

Part 4: Implementing a Linked List

class Term {
Term(int coeff, int expon)
{ coefficient = coeff;
 exponent = expon;
}

public int compareTo(Term T2)
{ return new Integer(exponent).compareTo(
 new Integer(T2.exponent));
}

 int coefficient, exponent;
 Term link;
}

The Term class (shown above) represents a single term o
exponent are assumed to be positive integers. The Polyno
objects, in which the first Term is a dummy header node.

01 - (Irvine, Spring 2002)
class Polynomial {
 void addTerm(Term T)
 { }

 Term find(Term T)
 { }

 public String toString()
 { }

// this is the only instance field
 Term lstHead = new Term(0,0);
}

f a polynomial. Both the coefficient and
mial class (above) holds a linked list of Term

4

Do the following:
1. (10 points) Implement the addTerm() method so that it adds a new Term to the end of the linked list.

void addTerm(Term T)
{

}

2. (10 points) Implement the find() method so that it searches for the first Term in the list that has a
matching exponent. If the search is successful, return a reference to the Term; otherwise, return null.

Term find(Term T)
{

}

01 - (Irvine, Spring 2002) 5

	COP 3337 Test 3NAME_________________
	
	Part 1: Selection Sort
	Part 2: Binary Search
	Part 3: Java Collection Classes
	Part 4: Implementing a Linked List

