
SPRING 2004: COP 3530 Data Structures

[Programming Assignment 1; Due January 27 in class.]

This assignment will be graded, but the points will not be used towards your grade for the class.
Extra credit work will be graded.

Problem Description

You have been given a regular deck of 52 cards. At the start, the deck of cards is in perfect
increasing order, i.e., the deck when placed face down has the four Aces at the top followed
by the four twos, four threes, . . ., four tens, four jacks, four queens, and four kings. Within the
set of four Aces, the cards are ordered starting from the Club Ace at the top followed by the
Diamond Ace, Heart Ace, and the Spade Ace. The same ordering of the suites occurs in the twos,
threes and so on. Your first job is to implement classes called aCard and deckOfCards. The class
aCard should have an overriding implementation of the equals and toString methods. It should
also implement the compareTo method of the interface Comparable. Instead of storing the string
representing the card, the class aCard should have one integer data field called cardCode to store
an integer code for that card. For example, this integer code could refer to the position of that card
in the initial deck. The method toString should take care of converting from the integer code to
the string representing the card. For instance, according to the coding scheme mentioned above,
code 0 would represent “Club Ace”, code 6 would represent “Heart Two”, and so on. The class
deckOfCards should contain a list (array) of aCard and should be initialized to contain the deck
in perfect increasing order. Also, define an interface called Deck and have the class deckOfCards
implement Deck.

We define a perfect shuffle to be the following operation. The deck of cards is placed face
down on a table. It is then separated into two equal half piles, and then the two half piles are
“perfectly interleaved” (just like the way the professional card dealers shuffle at a casino). In other
words any two cards that are next to each other in one of the half piles, will be separated by exactly
one card from the other pile after the perfect shuffle. Care is taken so that the card that was on
top of the deck before the shuffle remains on top after the shuffle (similarly, the card that was at
the bottom of the deck before the shuffle remains at the bottom after the shuffle). Note that the
method, as defined above, has no randomness in the result. Your next task is to define a method
called perfectShuffle in the interface Deck and implement it in deckOfCards.

There is one special card in the deck – the Jack of Spades. You need to define a method called
findSpecial in Deck and implement it in the class deckOfCards; this method will report the
location of the special card (i.e., its position from the top of the deck, where the top card is said
to have location 0 and the bottom card 51).

Now assume that a dealer deals 4 hands for a card game, i.e., the dealer deals one card per
player iteratively until all the cards in the deck are distributed. So the first player (player number
0) would get cards at locations 0, 4, 8, 12, . . . , 48, while the second player (player number 1) gets
cards at locations 1, 5, 9, 13, . . . , 49, and so on. You need to implement a method called findMax
in the class deckOfCards that will report the “highest card” in player i’s hand (assuming that
the shuffler were to deal the current deck of cards). In order to determine the highest card, the
cards in the deck in increasing order are as follows: Club Ace, Diamond Ace, Heart Ace, Spade
Ace, Two Clubs, Two Diamonds, Two Hearts, Two Spades, Three Clubs, and so on, upto King
Spades. The method findMax has four parameters. The first is an object of type deckOfCards and

the last is a functor that implements how to compare cards in the deck. The second parameter is
the player number. The third is the number of players being dealt cards (in this case, this is 4).

Finally you need to write a main program that creates a new deck of cards, shuffles the deck
7 times, and after each shuffle reports both the location of the special card, as well as the highest
card in the hand of player number 2 (assuming that the cards are dealt after that shuffle).

What to Submit

Do not print out the contents of the decks after each shuffle, although you may want to add a
private method to do so for debugging purposes. Make sure to have a good comments section and
run your code through Javadoc. Use runtime exceptions to check parameters of findMax. Print
out the source code and output; also submit the source code on a labeled floppy disk. At the head
of the program you should have your name and class information. Your program is due at the start
of the class, not at the end of the class. If you cannot come to class, you need to slide it under my
office door at least 15 minutes before class.

Academic Misconduct

You may talk to your friends about your homework. But the programming effort has to be your
own. For every programming assignment, print out a statement at the top of the program stating
that “the program is your work and you did not acquire it or part of it from elsewhere”. Also,
sign the above statement. If you have questions about what constitutes academic dishonesty, please
consult the FIU web site at URL: http://www.fiu.edu/provost/polman/sec2/sec2web2-44.htm

Details

Here is the specification that you need to use. Note that the methods refer to the generic Object
and uses functors to implement findMax:

public interface Deck
{

public void perfectShuffle();
public int locateSpecial();
public Object findMax(Object [] a, int startIndex, int incrIndex, Comparator cmp)

}

import java.util.Comparator;
class aCard
{

/* Some constructor to be implemented here */
public String toString() { /* Implementation not shown */ }
public boolean equals(Object rhs) { /* Implementation not shown */ }
public Object getCard() { /* Implementation not shown */ }
/* The private data field(s) here */
private int cardCode;

}

class deckOfCards implements Deck
{

/* Some constructor to be implemented here */
public void perfectShuffle() { /* Implementation not shown */ }
public int locateSpecial() { /* Implementation not shown */ }
public Object findMax(Object [] a, int startIndex,

int incrIndex, Comparator cmp) { /* Implementation not shown */ }
public Object getDeck() { /* Implementation not shown */ }
/* The private data field(s) here */

}

class ShuffleTest
{

private static class usingPerfectOrder implements Comparator
{

public int compare(Object obj1, Object obj2)
{ /* Implementation not shown */ }

}
public static void main(String [] args)
{ /* Implementation not shown */ }

}

Extra Credit

For extra credit you may try your hand at any of the various problems listed below. Make sure
your documentation states clearly which of these problems you have correctly implemented. It is
your responsibility to prove to me that your implementations of these parts work correctly.

1. Add a method to generate a “random shuffle”, i.e., a random permutation of the cards. Your
documentation should explain clearly the algorithm you are using to generate such a shuffled
deck.

2. Write a program to count the number of “random shuffles” you need before the “Heart Queen”
is at the top of the deck.

3. Write a program to count the number of “random shuffles” before player number 1 gets at
least 6 cards from the Diamonds suit.

