COT 5407: Introduction to Algorithms

> Giri Narasimhan
> ECS 254A; Phone: $x 3748$ giri@cis.fiu.edu
http://www.cis.fiu.edu/~giri/teach/5407S17.html https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

Why should I care about Algorithms?

Cartoon from Intractability by Garey and Johnson

"I can't find an efficient algorithm, I guess I'm just too dumb."

More questions you should ask

- Who should know about Algorithms?
- Is there a future in this field?
- Would I ever need it if I want to be a software engineer or work with databases?

Why are theoretical results useful?

"I can't find an efficient algorithm, because no such algorithm is possible!"

Cartoon from Intractability by Garey and Johnson

Why are theoretical results useful?

"I can't find an efficient algorithm, but neither can all these famous people."
Cartoon from Intractability by Garey and Johnson

Evaluation

- Exams (2)

Quizzes

- Homework Assignments
- Semester Project

Class Participation

40\%
10\%
40\% 5\% 5\%

What you should already know

- Array Lists

- Linked Lists
- Sorted Lists
- Stacks and Queues
- Trees
- Binary Search Trees
- Heaps and Priority Queues
- Graphs
- Adjacency Lists
- Adjacency Matrices
- Basic Sorting Algorithms

Algorithms are "recipes"!

Algorithms can be simple

I THOUGHT YOU WERE FIRING THE PEOPLE WITH THE HIGHEST SALARIES.

Dilbert by Scott Adams From the ClariNet electronic newspaper Redistribution prohibited info@clarinet.com

History of Algorithms

The great thinkers of our field:
Euclid, 300 BC
Bhaskara, $6^{\text {th }}$ century
Al Khwarizmi, 9th century
Fibonacci, $13^{\text {th }}$ century
Gauss, 18-19 th century
Babbage, 19th century
Turing, 20 ${ }^{\text {th }}$ century
von Neumann, $20^{\text {th }}$ century
Knuth, Karp, Tarjan, Rabin, ..., 20-21st century

Gauss - sum of series

- $1+2+3+\ldots+N$
- Gauss observed that
- $1+N=N+1$
- $2+\mathrm{N}-1=\mathrm{N}+1$
- Thus, $1+2+3+\ldots+N$
- $=(2+3+\ldots+N-1)+(N+1)$
- $=(3+\ldots+N-2)+(N+1)+(N+1)$
- Keep reducing until when?
- Depends on whether or not N is even or odd
- N is even:

$$
>=(N+1) N / 2=N(N+1) / 2
$$

- N is odd:

$$
>=(N+1)(N-1) / 2+(N+1) / 2=N(N+1) / 2
$$

Al Khwarizmi' s algorithm

$43 \times$	
- 43	17
- 21	34
- 10	68 (ignore)
- 5	136
- 2	272 (ignore)
- 1	544

Euclid's Algorithm

$\operatorname{GCD}(12,8)=4 ; \operatorname{GCD}(49,35)=7$;
$\operatorname{GCD}(210,588)=? ?$
$\operatorname{GCD}(a, b)=$??
Observation: [a and b are integers and $a \geq b$]

- GCD $(a, b)=$ GCD (a-b,b)
- Euclid's Rule: [a and b are integers and $a \geq b$]
- GCD (a,b) = GCD (a mod b, b)
- Euclid's GCD Algorithm:
- GCD(a,b)

If $(b=0)$ then return a : return GCD $(a \bmod b, b)$

If you like Algorithms, nothing to worry about!

9 Original Artist
Reproduction rights obtainable from

"Calculus is my new versace. I get a buzz from algorithms. What's going on with me, Raymond?

Search

- You are asked to guess a number X that is known to be an integer lying in the range A through B. How many guesses do you need in the worst case?
- Use binary search; Number of guesses $=\log _{2}(B-A)$
- You are asked to guess a positive integer X. How many guesses do you need in the worst case?
- NOTE: No upper bound is known for the number.
- Algorithm:
$>$ figure out B (by using Doubling Search)
> perform binary search in the range $B / 2$ through B.
- Number of guesses $=\log _{2} B+\log _{2}(B-B / 2)$
- Since X is between $B / 2$ and B, we have: $\log _{2}(B / 2)<\log _{2} X$,
- Number of guesses < $2 \log _{2} X$ - 1

Polynomial Evaluation

- Given a polynomial
- $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}$
compute the value of the polynomial for a given value of x.
- How many additions and multiplications are needed?
- Simple solution:
$>$ Number of additions $=n$
$>$ Number of multiplications $=1+2+\ldots+n=n(n+1) / 2$
- Reusing previous computations: n additions and $2 n$ multiplications!
- Improved solution using Horner's rule:
$\left.>p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots x\left(a_{n-1}+x a_{n}\right)\right) \ldots\right)\right)$
$>$ Number of additions $=n$
$>$ Number of multiplications $=n$

