COT 5407: Introduction to Algorithms

Giri Narasimhan

ECS 254A; Phone: x3748 giri@cis.fiu.edu

http://www.cis.fiu.edu/~giri/teach/5407517.html https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

Why should I care about Algorithms?

Cartoon from Intractability by Garey and Johnson

"I can't find an efficient algorithm, I guess I'm just too dumb."

More questions you should ask

- Who should know about Algorithms?
- Is there a future in this field?
- Would I ever need it if I want to be a software engineer or work with databases?

Why are theoretical results useful?

"I can't find an efficient algorithm, because no such algorithm is possible!"

8/28/07 COT 5407

Why are theoretical results useful?

"I can't find an efficient algorithm, but neither can all these famous people."

8/28/07 COT 5407 5

Evaluation

• Exams (2)	40%
 Quizzes 	10%
 Homework Assignments 	40%
 Semester Project 	5%
 Class Participation 	5%

What you should already know ...

- Array Lists
- Linked Lists
- Sorted Lists
- Stacks and Queues
- Trees
- Binary Search Trees
- Heaps and Priority Queues
- Graphs
 - Adjacency Lists
 - Adjacency Matrices
- Basic Sorting Algorithms

Algorithms are "recipes"!

The Buffalo News 1992

HAGAR THE HORRIBLE

Algorithms can be simple

Dilbert by Scott Adams From the ClariNet electronic newspaper Redistribution prohibited info@clarinet.com

History of Algorithms

The great thinkers of our field:

- Euclid, 300 BC
- Bhaskara, 6th century
- Al Khwarizmi, 9th century
- Fibonacci, 13th century
- Gauss, 18-19th century
- Babbage, 19th century
- Turing, 20th century
- von Neumann, 20th century
- Knuth, Karp, Tarjan, Rabin, ..., 20-21st century

Gauss - sum of series

- Gauss observed that
 - 1 + N = N+1
 - 2 + N-1 = N+1
 - ...
 - Thus, 1 + 2 + 3 + ... + N
 - = (2 + 3 + ... + N-1) + (N+1)
 - = (3 + ... + N-2) + (N+1) + (N+1)
 - Keep reducing until when?
 - Depends on whether or not N is even or odd
 - N is even:

$$> = (N+1) N/2 = N(N+1)/2$$

N is odd:

$$> = (N+1)(N-1)/2 + (N+1)/2 = N(N+1)/2$$

Al Khwarizmi's algorithm

```
43 X 17
43 17
21 34
10 68 (ignore)
5 136
2 272 (ignore)
1 544
```

Euclid's Algorithm

• GCD(12,8) = 4; GCD(49,35) = 7; • GCD(210,588) = ?? GCD(a,b) = ?? Observation: [a and b are integers and a ≥ b] • GCD(a,b) = GCD(a-b,b) Euclid's Rule: [a and b are integers and a ≥ b] • $GCD(a,b) = GCD(a \mod b, b)$ Euclid's GCD Algorithm: GCD(a,b) If (b = 0) then return a; return GCD(a mod b, b)

If you like Algorithms, nothing to worry about!

© Original Artist Reproduction rights obtainable from www.CartoonStock.com

"Calculus is my new Versace. I get a buzz from algorithms. What's going on with me, Raymond?

I'm scared."

8/28/07

Search

- You are asked to guess a number X that is known to be an integer lying in the range A through B. How many guesses do you need in the worst case?
 - Use binary search; Number of guesses = log₂(B-A)
- You are asked to guess a positive integer X. How many guesses do you need in the worst case?
 - NOTE: No upper bound is known for the number.
 - Algorithm:
 - > figure out B (by using Doubling Search)
 - > perform binary search in the range B/2 through B.
 - Number of guesses = $log_2B + log_2(B B/2)$
 - Since X is between B/2 and B, we have: $log_2(B/2) < log_2X$,
 - Number of guesses < 2log₂X 1

Polynomial Evaluation

- Given a polynomial
 - $p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1} + a_n x^n$

compute the value of the polynomial for a given value of x.

- How many additions and multiplications are needed?
 - Simple solution:
 - > Number of additions = n
 - \triangleright Number of multiplications = 1 + 2 + ... + n = n(n+1)/2
 - Reusing previous computations: n additions and 2n multiplications!
 - Improved solution using Horner's rule:
 - $> p(x) = a_0 + x(a_1 + x(a_2 + ... \times (a_{n-1} + x \cdot a_n))...))$
 - > Number of additions = n
 - Number of multiplications = n