
1/19/17 COT 5407 1

COT 5407: Introduction to Algorithms

Giri Narasimhan
ECS 254A; Phone: x3748

giri@cis.fiu.edu
http://www.cis.fiu.edu/~giri/teach/5407S17.html
https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

1/17/17 COT 5407 2

Figure 8.10 Quicksort

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Partition Algorithm
•  Pick a pivot
•  Compare each item to a pivot and create two lists:

§  L = list of all items smaller than the pivot
§  R = list of all items larger than the pivot

•  One scan through the list is enough, but seems to need
extra space

•  How to design an in-place partition algorithm!

1/17/17 COT 5407 3

O(N) time

1/17/17 COT 5407 4

Page 146, CLRS

QuickSort

Time Complexity
Recurrence Relaton
•  T(N) = O(N) + T(N1) + T(N2)
Average-Case Time Complexity
•  On the average, N1 = N2 = N/2
•  T(N) = O(N) + 2T(N/2)
•  Thus, average-case complexity = O(N log N)
Worst-Case Time Complexity
•  Worst-case: Either N1 or N2 = 0

§  Thus, T(N) = O(N) + T(N - 1)
§  T(N) = O(N2)

1/17/17 COT 5407 5

9/18/08 COT 5407 6

Variants of QuickSort
•  Choice of Pivot

§  Random choice
§  Median of 3
§  Median

•  Avoiding recursion on small subarrays
§  Invoking InsertionSort for small arrays

1/19/17 COT 5407 7

Sorting Algorithms
•  SelectionSort
•  InsertionSort
•  BubbleSort
•  ShakerSort
•  MergeSort
•  HeapSort
•  QuickSort
•  Bucket & Radix Sort
•  Counting Sort

1/19/17 COT 5407 8

Definitions
Abstract Problem: defines a function from any allowable input

to a corresponding output

Instance of a Problem: a specific input to abstract problem
Algorithm: well-defined computational procedure that takes an

instance of a problem as input and produces the correct
output

An Algorithm must halt on every input with correct output.

1/19/17 COT 5407 9

Algorithm Analysis
•  Worst-case time complexity*

§  Worst possible time of all input instances of length N
•  (Worst-case) space complexity

§  Worst possible spaceof all input instances of length N
•  Average-case time complexity

§  Average time of all input instances of length N

Upper and Lower Bounds
•  Time Complexity of a Problem

§  Difficulty: Since there can be many algorithms that solve a problem,
what time complexity should we pick?

§  Solution: Define upper bounds and lower bounds within which the
time complexity lies.

•  What is the upper bound on time complexity of sorting?
§  Answer: Since SelectionSort runs in worst-case O(N2) and

MergeSort runs in O(N log N), either one works as an upper bound.
§  Critical Point: Among all upper bounds, the best is the lowest

possible upper bound, i.e., time complexity of the best algorithm.
•  What is the lower bound on time complexity of sorting?

§  Difficulty: If we claim that lower bound is O(f(N)), then we have to
prove that no algorithm that sorts N items can run in worst-case
time o(f(N)).

1/19/17 COT 5407 10

Lower Bounds
•  Surprisingly, it is possible to prove lower bounds for many

comparison-based problems.
•  For any comparison-based problem, for any input of length

N, if there are P(N) possible solutions, then any algorithm
must need log2(P(N)) to solve the problem.

•  Binary Search on a list of N items has at least N + 1 possible
solutions. Hence lower bound is
§  log2(N+1).

•  Sorting a list of N items has at least N! possible solutions.
Hence lower bound is
§  log2(N!) = O(N log N)

•  Thus, MergeSort is an optimal algorithm.
§  Because its worst-case time complexity equals lower bound!

1/19/17 COT 5407 11

Beating the Lower Bound
•  Bucket Sort

§  Runs in time O(N+K) given N integers in range [a+1, a+K]
§  If K = O(N), we are able to sort in O(N)
§  How is it possible to beat the lower bound?
§  Only because we know more about the data.
§  If nothing is know about the data, the lower bound holds.

•  Radix Sort
§  Runs in time O(d(N+K)) given N items with d digits each in range [1,K]

•  Counting Sort
§  Runs in time O(N+K) given N items in range [a+1, a+K]

1/19/17 COT 5407 12

1/19/17 COT 5407 13

Bucket Sort
•  N integer values in the range [a..a+m-1]
•  For e.g., sort a list of 50 scores in the range [0..9].
•  Algorithm

§  Make m buckets [a..a+m-1]
§  As you read elements throw into appropriate bucket
§  Output contents of buckets [0..m] in that order

•  Time O(N+m)

•  Warning: This algorithm cannot be used for “infinite-precision” real
numbers, even if the range of values is specified.

1/19/17 COT 5407 14

Stable Sort
•  A sort is stable if equal elements appear in the same order

in both the input and the output.
•  Which sorts are stable? Homework!

1/19/17 COT 5407 15

Radix Sort

3 5 9

3 5 7

3 5 1

7 3 9

3 3 6

7 2 0

3 5 5

3 5 9

3 5 7

3 5 1

3 3 6

3 5 5

7 3 9

7 2 0

Algorithm
for i = 1 to d do

sort array A on digit i using any sorting algorithm

Time Complexity: O((N+m) + (N+m2) + …+ (N+md))

3 3 6

3 5 9

3 5 7

3 5 1

3 5 5

7 2 0

7 3 9

3 3 6

3 5 1

3 5 5

3 5 7

3 5 9

7 2 0

8 3 9

Space Complexity: O(md)

1/19/17 COT 5407 16

Radix Sort
3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Algorithm
for i = 1 to d do

sort array A on digit i using a stable sort algorithm

Time Complexity: O((n+m)d)

• Warning: This algorithm cannot be used for “infinite-precision”
real numbers, even if the range of values is specified.

1/19/17 COT 5407 17

Counting Sort
1 2 3 4 5 6 7 8
2 5 3 0 2 3 0 3

0 1 2 3 4 5

2 0 2 3 0 1

0 1 2 3 4 5

2 2 4 7 7 8

Initial Array

Counts

Cumulative
Counts

• Warning: This algorithm cannot be used for “infinite-precision”
real numbers, even if the range of values is specified.

9/18/08 COT 5407 18

Storing binary trees as arrays

20 7 38 4 16 37 43

9/18/08 COT 5407 19

Heaps (Max-Heap)

43 16 38 4 7 37 20

43 16 38 4 7 37 20 2 3 6 1 30

HEAP represents a binary tree stored as an array
such that:
•  Tree is filled on all levels except last
•  Last level is filled from left to right
•  Left & right child of i are in locations 2i and 2i+1
•  HEAP PROPERTY:

Parent value is at least as large as child’s value

9/18/08 COT 5407 20

HeapSort
•  First convert array into a heap (BUILD-MAX-HEAP, p133)
•  Then convert heap into sorted array (HEAPSORT, p136)

9/18/08 COT 5407 21

Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

9/18/08 COT 5407 22

HeapSort: Part 1

p154, CLRS

O(height of
node in

location i) =
O(log(size of

subtree))

9/18/08 COT 5407 23

HeapSort: Part 2

O(log n)
Total:
O(nlog n)

9/18/08 COT 5407 24

HeapSort: Part 2

O(log n)
Total:
O(nlog n)

HeapSort

For the HeapSort analysis, we need to compute

blogncX

h=0

h

2n

We know that
1X

k=0

xk =
1

1� x

Di↵ernetiating both sides, we get
1X

k=0

kxk�1 =
1

(1� x)2

Multiplying both sides by x,weget
1X

k=0

kxk =
x

(1� x)2

Setting x = 1/2,we can show that
blogncX

h=0

h

2n
 2

2

Build-Max-Heap Analysis

9/18/08 COT 5407 25

We need to compute:

