COT 5407: Introduction to Algorithms

> Giri Narasimhan
> ECS 254A; Phone: $x 3748$ giri@cis.fiu.edu
http://www.cis.fiu.edu/~giri/teach/5407S17.html https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

Figure 8.10 Quicksort

Partition Algorithm

- Pick a pivot
- Compare each item to a pivot and create two lists:
- $L=$ list of all items smaller than the pivot
- $R=$ list of all items larger than the pivot
$\mathrm{O}(\mathrm{N})$ time
- One scan through the list is enough, but seems to need extra space
- How to design an in-place partition algorithm!

```
QuickSort(array \(A\), int \(p\), int \(r\) )
1 if \((p<r)\)
\(2 \quad\) then \(q \leftarrow \operatorname{Partition}(A, p, r)\)
\(3 \quad \operatorname{QuickSort}(A, p, q-1)\)
\(4 \quad \operatorname{QuickSort}(A, q+1, r)\)
```

To sort array call $\operatorname{QuickSort}(A, 1$, length $[A])$.
Partition(array A, int p, int r)
$1 \quad x \leftarrow A[r]$
\triangleright Choose pivot
$2 \quad i \leftarrow p-1$
3 for $j \leftarrow p$ to $r-1$
4 do if $(A[j] \leq x)$
$5 \quad$ then $i \leftarrow i+1$
$6 \quad$ exchange $A[i] \leftrightarrow A[j]$
7 exchange $A[i+1] \leftrightarrow A[r]$
8 return $i+1$

Time Complexity

Recurrence Relaton

- $T(N)=O(N)+T\left(N_{1}\right)+T\left(N_{2}\right)$

Average-Case Time Complexity

- On the average, $N_{1}=N_{2}=N / 2$
- $T(N)=O(N)+2 T(N / 2)$
- Thus, average-case complexity $=O(N \log N)$

Worst-Case Time Complexity

- Worst-case: Either N_{1} or $N_{2}=0$
- Thus, $T(N)=O(N)+T(N-1)$
- $T(N)=O\left(N^{2}\right)$

Variants of QuickSort

- Choice of Pivot
- Random choice
- Median of 3
- Median
- Avoiding recursion on small subarrays
- Invoking InsertionSort for small arrays

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket \& Radix Sort
- Counting Sort

Definitions

Abstract Problem: defines a function from any allowable input to a corresponding output

Instance of a Problem: a specific input to abstract problem
Algorithm: well-defined computational procedure that takes an instance of a problem as input and produces the correct output
An Algorithm must halt on every input with correct output.

Algorithm Analysis

- Worst-case time complexity*
- Worst possible time of all input instances of length N
- (Worst-case) space complexity
- Worst possible spaceof all input instances of length N
- Average-case time complexity
- Average time of all input instances of length N

Upper and Lower Bounds

- Time Complexity of a Problem
- Difficulty: Since there can be many algorithms that solve a problem, what time complexity should we pick?
- Solution: Define upper bounds and lower bounds within which the time complexity lies.
- What is the upper bound on time complexity of sorting?
- Answer: Since SelectionSort runs in worst-case $O\left(N^{2}\right)$ and MergeSort runs in $O(N \log N)$, either one works as an upper bound.
- Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e., time complexity of the best algorithm.
- What is the lower bound on time complexity of sorting?
- Difficulty: If we claim that lower bound is $O(f(N))$, then we have to prove that no algorithm that sorts N items can run in worst-case time o(f(N)).

Lower Bounds

- Surprisingly, it is possible to prove lower bounds for many comparison-based problems.
- For any comparison-based problem, for any input of length N, if there are $P(N)$ possible solutions, then any algorithm must need $\log _{2}(P(N))$ to solve the problem.
- Binary Search on a list of N items has at least $N+1$ possible solutions. Hence lower bound is
- $\log _{2}(N+1)$.
- Sorting a list of N items has at least N ! possible solutions. Hence lower bound is
- $\log _{2}(N!)=O(N \log N)$
- Thus, MergeSort is an optimal algorithm.
- Because its worst-case time complexity equals lower bound!

Beating the Lower Bound

- Bucket Sort
- Runs in time $O(N+K)$ given N integers in range $[a+1, a+K]$
- If $K=O(N)$, we are able to sort in $O(N)$
- How is it possible to beat the lower bound?
- Only because we know more about the data.
- If nothing is know about the data, the lower bound holds.
- Radix Sort
- Runs in time $O(\mathrm{~d}(\mathrm{~N}+\mathrm{K}))$ given N items with d digits each in range [1, K]
- Counting Sort
- Runs in time $O(N+K)$ given N items in range $[a+1, a+K]$

Bucket Sort

- N integer values in the range [a.. $a+m-1$]
- For e.g., sort a list of 50 scores in the range [0..9].
- Algorithm
- Make m buckets [a.. $a+m-1$]
- As you read elements throw into appropriate bucke \dagger
- Output contents of buckets [0..m] in that order
- Time $\mathrm{O}(\mathrm{N}+\mathrm{m})$
- Warning: This algorithm cannot be used for "infinite-precision" real numbers, even if the range of values is specified.

Stable Sort

- A sort is stable if equal elements appear in the same order in both the input and the output. Which sorts are stable? Homework!

Radix Sort

3	5	9	3	5	9	3	3	6	3	3	6
3	5	7	3	5	7	3	5	9	3	5	1
3	5	1	3	5	1	3	5	7	3	5	5
7	3	9	3	3	6	3	5	1	3	5	7
3	3	6	3	5	5	3	5	5	3	5	9
7	2	0	7	3	9	7	2	0	7	2	0
3	5	5	7	2	0	7	3	9	8	3	9

Algorithm
for $\mathrm{i}=1$ to d do
sort array A on digit i using any sorting algorithm
Time Complexity: $\mathrm{O}\left((\mathrm{N}+\mathrm{m})+\left(\mathrm{N}+\mathrm{m}^{2}\right)+\ldots+\left(\mathrm{N}+\mathrm{m}^{\mathrm{d}}\right)\right)$

Space Complexity: $O\left(m^{d}\right)$

Radix Sort

3	2	9	7	2	0	7	2	0	3	2	9
4	5	7	3	5	5	3	2	9	3	5	5
6	5	7	4	3	6	4	3	6	4	3	6
8	3	9	4	5	7	8	3	9	4	5	7
4	3	6	6	5	7	3	5	5	6	5	7
7	2	0	3	2	9	4	5	7	7	2	0
3	5	5	8	3	9	6	5	7	8	3	9

Algorithm

Time Complexity: O((n+m)d)
sort array A on digit i using a stable sort algorithm
-Warning: This algorithm cannot be used for "infinite-precision" real numbers, even if the range of values is specified.

Counting Sort

Initial Array

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

Counts | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

Cumulative Counts

0	1	2	3	4	5
2	2	4	7	7	8

-Warning: This algorithm cannot be used for "infinite-precision" real numbers, even if the range of values is specified.

Storing binary trees as arrays

20	7	38	4	16	37	43

Heaps (Max-Heap)

43	16	38	4	7	37	20

43	16	38	4	7	37	20	2	3	6	1	30

HEAP represents a binary tree stored as an array such that:

- Tree is filled on all levels except last
- Last level is filled from left to right
- Left \& right child of i are in locations $2 i$ and $2 i+1$
- HEAP PROPERTY:

Parent value is at least as large as child's value

HeapSort

- First convert array into a heap (BUILD-MAX-HEAP, p133)
- Then convert heap into sorted array (HEAPSORT, p136)

Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html
http://cg.scs.carleton.ca/~morin/misc/sortalg/

HeapSort: Part 1

Max-Heapify (array A, int i)
\triangleright Assume subtree rooted at i is not a heap;
\triangleright but subtrees rooted at children of i are heaps
$1 \quad l \leftarrow \operatorname{LEFT}[i]$
$2 \quad r \leftarrow \operatorname{RIGHT}[i]$
3 if $((l \leq h e a p-s i z e[A])$ and $(A[l]>A[i]))$
$4 \quad$ then largest $\leftarrow l$
$5 \quad$ else largest $\leftarrow i$
6 if $((r \leq$ heap-size $[A])$ and $(A[r]>A[$ largest $]))$
$7 \quad$ then largest $\leftarrow r$
8 if (largest $\neq i$)
$9 \quad$ then exchange $A[i] \leftrightarrow A[$ largest $]$
10
Max-HEAPIfy $(A$, largest)
p154, CLRS

HeapSort: Part 2

Build-MAx- $\operatorname{HEAP}(\operatorname{array} A)$
1 heap-size $[A] \leftarrow$ length $[A]$
2 for $i \leftarrow\lfloor$ length $[A] / 2\rfloor$ downto 1
3 do Max-Heapify (A, i)

HeapSort: Part 2

```
Build-MAX-HEAP(array A)
1 heap-size [A]}\leftarrow length[A
2 for }i\leftarrow\lfloor\mathrm{ length [A]/2\ downto 1
do Max-Heapify ( }A,i
HeapSort(array \(A\) )
1 Build-Max- \(\operatorname{Heap}(A)\)
2 for \(i \leftarrow\) length \([A]\) downto 2
3 do exchange \(A[1] \leftrightarrow A[i]\) heap-size \([A] \leftarrow\) heap-size \([A]-1 \quad \mathrm{O}(\log \mathrm{n})\) \(\operatorname{Max}-\operatorname{Heapify}(A, 1)\)
```


Build-Max-Heap Analysis

We need to compute:
 $$
\sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{n}}
$$

$$
\text { We know that } \sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}
$$

Differnetiating both sides, we get $\sum_{k=0}^{\infty} k x^{k-1}=\frac{1}{(1-x)^{2}}$
Multiplying both sides by x, weget $\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}$
Setting $x=1 / 2$, we can show that $\sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{n}} \leq 2$

