COT 5407: Introduction to Algorithms

Giri Narasimhan
ECS 254A: Phone: x3748

giri@cis.fiu.edu

http://www.cis.fiu.edu/~giri/teach/5407 517 html
https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

1/19/17 COT 5407 1

Figure 8.10 Quicksort

¢ Partition
Quicksort Quicksort
small items large items

1/17/17 COT 5407 2

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Partition Algorithm

Pick a pivot
Compare each item to a pivot and create two lists:

= L = list of all items smaller than the pivot .
. . . D O(N) time
= R = list of all items larger than the pivot

One scan through the list is enough, but seems to need
extra space

How to design an in-place partition algorithm!

1/17/17 COT 5407 3

QUICKSORT (array A,int p,int r)

1 if (p<r)

QuickSort 2 then ¢ « PARTITION(A, p, r)
3 QUICKSORT(A,p,q — 1)
4 QUICKSORT(A, ¢+ 1,7)

To sort array call QUICKSORT(A, 1, length|A)).

PARTITION(array A,int p,int r)

z — Alr| > Choose pivot
1—p—1
for j — ptor—1
do if (Alj] <
theni «— i1+ 1
exchange Ali] < Alj]
exchange At + 1] <« Alr] Page 146, CLRS

return ¢ + 1
1/17/17 COT 5407 4

=~ QO DN —

o J O Ot

Time Complexity

Recurrence Relaton

= T(N) = O(N) + T(N;) + T(N,)

Average-Case Time Complexity

* On the average, N; = N, = N/2

« T(N)=0O(N)+2T(N/2)

 Thus, average-case complexity = O(N log N)
Worst-Case Time Complexity

« Worst-case: Either N; or N, =0
= Thus, T(N) = O(N) + T(N - 1)
= T(N) = O(N?)

1/17/17 COT 5407

Variants of QuickSort

* Choice of Pivot
= Random choice
= Median of 3
= Median

* Avoiding recursion on small subarrays
= Invoking InsertionSort for small arrays

9/18/08 COT 5407

Sorting Algorithms

SelectionSort
InsertionSort
BubbleSort
ShakerSort
MergeSort
HeapSort
QuickSort

Bucket & Radix Sort
Counting Sort

1/19/17 COT 5407

Definitions

Abstract Problem: defines a function from any allowable mpuT
to a corresponding output

Instance of a Problem: a specific input to abstract problem

Algorithm: well-defined computational procedure that takes an
instance of a problem as input and produces the correct
output

An Algorithm must halt on every input with correct output.

1/19/17 COT 5407 8

Algorithm Analysis

* Worst-case time complexity™*
= Worst possible time of all input instances of length N

* (Worst-case) space complexity
= Worst possible spaceof all input instances of length N

* Average-case time complexity
= Average time of all input instances of length N

1/19/17 COT 5407

Upper and Lower Bounds

+ Time Complexity of a Problem

= Difficulty: Since there can be many algorithms that solve a problem,
what time complexity should we pick?

= Solution: Define upper bounds and lower bounds within which the
time complexity lies.
* What is the upper bound on time complexity of sorting?

= Answer: Since SelectionSort runs in worst-case O(N?) and
MergeSort runs in O(N log N), either one works as an upper bound.

= Critical Point: Among all upper bounds, the best is the lowest
possible upper bound, i.e., time complexity of the best algorithm.
* What is the lower bound on time complexity of sorting?

= Difficulty: If we claim that lower bound is O(f(N)), then we have to
prove that no algorithm that sorts N items can run in worst-case
time o(f(N)).

1/19/17 COT 5407 10

Lower Bounds

Surprisingly, it is possible to prove lower bounds for many
comparison-based problems.

For any comparison-based problem, for any input of length
N, if there are P(N) possible solutions, then any algorithm
must need‘ log,(P(N)) ‘To solve the problem.

Binary Search on a list of N items has at least N + 1 possible
solutions. Hence lower bound is

= log,(N+1).

Sorting a list of N items has at least NI possible solutions.
Hence lower bound is

= Jlog,(N!) = O(N log N)

Thus, MergeSort is an optimal algorithm.

= Because its worst-case time complexity equals lower bound!

1/19/17 COT 5407 11

Beating the Lower Bound

* Bucket Sort
= Runs in time O(N+K) given N integers in range [a+1, a+K]
If K= O(N), we are able to sort in O(N)
How is it possible to beat the lower bound?
Only because we know more about the data.
If nothing is know about the data, the lower bound holds.

e Radix Sort
= Runs in time O(d(N+K)) given N items with d digits each in range [1,K]

 Counting Sort
= Runs in time O(N+K) given N items in range [a+1, a+K]

1/19/17 COT 5407 12

Bucket Sort

N integer values in the range [a..a+m-1]
For e.g., sort a list of 50 scores in the range [0..9].
Algorithm
= Make m buckets [a..a+m-1]
= As you read elements throw into appropriate bucket
= Output contents of buckets [0..m] in that order

Time O(N+m)

Warning: This algorithm cannot be used for “infinite-precision” real
numbers, even if the range of values is specified.

1/19/17 COT 5407 13

Stable Sort

* A sort is stable if equal elements appear in the same order
in both the input and the output.

 Which sorts are stable? Homework!

1/19/17 COT 5407 14

W N W N W w w
ST D W w o O O,

= N

9
6
0
5

Radix Sort

~N

—
N N WO O w o w w w
w N 01 o1 O 01 W

=)

N N O w o w w w
N W o1 w o1 o1

O v O o

Algorithm
fori=1toddo

Time Complexity: O((N+m) + (N+m?) + ...+ (N+mY))

1/19/17

Space Complexity: O(m¢)

COT 5407

= N O o

W O O

sort array A on digit i using any sorting algorithm

00 N W w w w w

w N O 1 O O W

= O

W O VvV N O

15

Radix Sort

320 720 720 3209
4 5 7 355 3209 355
6 5 7 4 36 4 36 4 36
839‘ 457‘ 8 39 ‘ ~
4 3 6 6 5 7 355 6 57
720 3209 4 57 720
355 8 39 6 5 7 8 39
Algorithm Time Complexity: O((n+m)d)

fori=1toddo

sort array A on digit i using a stable sort algorithm

*Warning: This algorithm cannot be used for “infinite-precision”
real humbers, even if the range of values is specified.

1/19/17 COT 5407 16

Counting Sort

213 |4 15|61|7

Initial Array

Counts

Cumulative O|1121314 15
Counts

*Warning: This algorithm cannot be used for “infinite-precision”

real humbers, even if the range of values is specified.

1/19/17 COT 5407

17

Storing binary trees as arrays

20| 7 (38| 4 | 16 | 37 | 43

9/18/08 COT 5407

9/

Heaps (Max-Heap)

43 | 16 (38| 4 | 7 | 37 | 20

43 | 16 (38| 4 | 7 | 37 | 20| 2 3 6 1 | 30

HEAP represents a binary tree stored as an array
such that:
* Tree is filled on all levels except last
* Last level is filled from left to right
» Left & right child of i are in locations 2i and 2i+1
- HEAP PROPERTY:

Parent value is at least as large as child’ s value

HeapSort

* First convert array into a heap (BUILD-MAX-HEAP, p133)
« Then convert heap into sorted array (HEAPSORT, p136)

9/18/08 COT 5407 20

Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sortl/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

9/18/08 COT 5407 21

p—

MAX-HEAPIFY (array A, int 1)

S © 00 O Ot Wi+~

HeapSort: Part 1

> Assume subtree rooted at ¢ is not a heap:
> but subtrees rooted at children of ¢ are heaps
| — LEFT]]
r «— RIGHT[i]
if ((I < heap-size[A]) and (All] > Ali]))
then largest < [
else largest < 1
if ((r < heap-size|A]) and (Alr] > Allargest]))
then largest <« r
if (largest # 1)
then exchange Ali| < Allargest]
MAX-HEAPIFY (A, largest)

9/18/08 COT 5407

pl54, CLRS

22

HeapSort: Part 2

BUuiLD-MAX-HEAP(array A)

1 heap-size|A] « length|A]

2 for i « |length|A]/2| downto 1
3 do MAX-HEAPIFY (A, 1)

9/18/08 COT 5407

23

HeapSort: Part 2

BUuiLD-MAX-HEAP(array A)

1 heap-size|A] « length|A]

2 for i « |length|A]/2| downto 1
3 do MAX-HEAPIFY (A, 1)

HEAPSORT(array A)

1 BuiLD-MAXx-HEAP(A)

2 for i « length|A] downto 2

3 do exchange A[l] < Ali] Total:
heap-size[A] < heap-size[A] — 1| O(logn) { O(nlog n)
MAX-HEAPIFY(A, 1)

i

(@

9/18/08 COT 5407 24

Build-Max-Heap Analysis

[logn] ¢

We need to compute: on

h=0

9 1
We know that Z ot =
— 1l —=x
o0 1
Differnetiating both sides, we get Z k! = 5
— (1 —x)
Multiplying both sides by x, weget Z ka® = = 5
— (1 —x)
[log]
Setting x = 1/2, we can show that Z on < 2
h=0

9/18/08 COT 5407 25

