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Figure 8.10   Quicksort 
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Partition Algorithm
•  Pick a pivot 
•  Compare each item to a pivot and create two lists: 

§  L = list of all items smaller than the pivot 
§  R = list of all items larger than the pivot 

•  One scan through the list is enough, but seems to need 
extra space 

•  How to design an in-place partition algorithm! 
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O(N) time 
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Page 146, CLRS 

QuickSort



Time Complexity
Recurrence Relaton 
•  T(N) = O(N) + T(N1) + T(N2) 
Average-Case Time Complexity 
•  On the average, N1 = N2 = N/2 
•  T(N) = O(N) + 2T(N/2) 
•  Thus, average-case complexity = O(N log N) 
Worst-Case Time Complexity 
•  Worst-case: Either N1 or N2 = 0 

§  Thus, T(N) = O(N) + T(N - 1) 
§  T(N) = O(N2) 

1/17/17 COT 5407 5 



9/18/08 COT 5407 6 

Variants of QuickSort
•  Choice of Pivot 

§  Random choice 
§  Median of 3 
§  Median 

•  Avoiding recursion on small subarrays 
§  Invoking InsertionSort for small arrays 
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Sorting Algorithms
•  SelectionSort 
•  InsertionSort 
•  BubbleSort 
•  ShakerSort 
•  MergeSort 
•  HeapSort 
•  QuickSort 
•  Bucket & Radix Sort 
•  Counting Sort 
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Definitions
Abstract Problem: defines a function from any allowable input 

to a corresponding output  
 
 
 
 
Instance of a Problem: a specific input to abstract problem 
Algorithm: well-defined computational procedure that takes an 

instance of a problem as input and produces the correct 
output 

An Algorithm must halt on every input with correct output. 
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Algorithm Analysis
•  Worst-case time complexity* 

§  Worst possible time of all input instances of length N 
•  (Worst-case) space complexity 

§  Worst possible spaceof all input instances of length N 
•  Average-case time complexity 

§  Average time of all input instances of length N 



Upper and Lower Bounds
•  Time Complexity of a Problem 

§  Difficulty: Since there can be many algorithms that solve a problem, 
what time complexity should we pick? 

§  Solution: Define upper bounds and lower bounds within which the 
time complexity lies. 

•  What is the upper bound on time complexity of sorting? 
§  Answer: Since SelectionSort runs in worst-case O(N2) and 

MergeSort runs in O(N log N), either one works as an upper bound.  
§  Critical Point: Among all upper bounds, the best is the lowest 

possible upper bound, i.e., time complexity of the best algorithm. 
•  What is the lower bound on time complexity of sorting? 

§  Difficulty: If we claim that lower bound is O(f(N)), then we have to 
prove that no algorithm that sorts N items can run in worst-case 
time o(f(N)).  
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Lower Bounds
•  Surprisingly, it is possible to prove lower bounds for many 

comparison-based problems.  
•  For any comparison-based problem, for any input of length 

N, if there are P(N) possible solutions, then any algorithm 
must need log2(P(N)) to solve the problem.  

•  Binary Search on a list of N items has at least N + 1 possible 
solutions. Hence lower bound is  
§  log2(N+1).  

•  Sorting a list of N items has at least N! possible solutions. 
Hence lower bound is 
§  log2(N!) = O(N log N) 

•  Thus, MergeSort is an optimal algorithm.  
§  Because its worst-case time complexity equals lower bound! 

1/19/17 COT 5407 11 



Beating the Lower Bound
•  Bucket Sort 

§  Runs in time O(N+K) given N integers in range [a+1, a+K] 
§  If K = O(N), we are able to sort in O(N) 
§  How is it possible to beat the lower bound?  
§  Only because we know more about the data.  
§  If nothing is know about the data, the lower bound holds. 

•  Radix Sort 
§  Runs in time O(d(N+K)) given N items with d digits each in range [1,K] 

•  Counting Sort 
§  Runs in time O(N+K) given N items in range [a+1, a+K] 
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Bucket Sort
•  N integer values in the range [a..a+m-1] 
•  For e.g., sort a list of 50 scores in the range [0..9]. 
•  Algorithm 

§  Make m buckets [a..a+m-1] 
§  As you read elements throw into appropriate bucket 
§  Output contents of buckets [0..m] in that order 

•  Time O(N+m) 

•  Warning: This algorithm cannot be used for “infinite-precision” real 
numbers, even if the range of values is specified.  
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Stable Sort
•  A sort is stable if equal elements appear in the same order 

in both the input and the output. 
•  Which sorts are stable? Homework! 
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Radix Sort

3 5 9

3 5 7

3 5 1

7 3 9

3 3 6

7 2 0

3 5 5

3 5 9

3 5 7

3 5 1

3 3 6

3 5 5

7 3 9

7 2 0

Algorithm
for i = 1 to d do

sort array A on digit i using any sorting algorithm 

Time Complexity: O((N+m) + (N+m2) + …+ (N+md))

3 3 6

3 5 9

3 5 7

3 5 1

3 5 5

7 2 0

7 3 9

3 3 6

3 5 1

3 5 5

3 5 7

3 5 9

7 2 0

8 3 9

Space Complexity: O(md)
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Radix Sort
3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Algorithm
for i = 1 to d do

sort array A on digit i using a stable sort algorithm 

Time Complexity: O((n+m)d)

• Warning: This algorithm cannot be used for “infinite-precision” 
real numbers, even if the range of values is specified.  
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Counting Sort
1 2 3 4 5 6 7 8 
2 5 3 0 2 3 0 3 

0 1 2 3 4 5 

2 0 2 3 0 1 

0 1 2 3 4 5 

2 2 4 7 7 8 

Initial Array 

Counts 

Cumulative 
Counts 

• Warning: This algorithm cannot be used for “infinite-precision” 
real numbers, even if the range of values is specified.  
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Storing binary trees as arrays

20 7 38 4 16 37 43 
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Heaps (Max-Heap)

43 16 38 4 7 37 20 

43 16 38 4 7 37 20 2 3 6 1 30 

HEAP represents a binary tree stored as an array  
such that: 
•  Tree is filled on all levels except last 
•  Last level is filled from left to right 
•  Left & right child of i are in locations 2i and 2i+1 
•  HEAP PROPERTY: 

Parent value is at least as large as child’s value 
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HeapSort
•  First convert array into a heap (BUILD-MAX-HEAP, p133) 
•  Then convert heap into sorted array (HEAPSORT, p136) 
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Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html 

http://cg.scs.carleton.ca/~morin/misc/sortalg/ 
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HeapSort: Part 1

p154, CLRS 

O(height of 
node in 

location i) = 
O(log(size of 

subtree)) 
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HeapSort: Part 2

O(log n)
Total:
O(nlog n)
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HeapSort: Part 2

O(log n)
Total:
O(nlog n)



HeapSort

For the HeapSort analysis, we need to compute

blogncX

h=0

h

2n

We know that
1X

k=0

xk =
1

1� x

Di↵ernetiating both sides, we get
1X

k=0

kxk�1 =
1

(1� x)2

Multiplying both sides by x,weget
1X

k=0

kxk =
x

(1� x)2

Setting x = 1/2,we can show that
blogncX

h=0

h

2n
 2

2

Build-Max-Heap Analysis

9/18/08 COT 5407 25 

We need to compute: 


