COT 5407: Introduction to Algorithms Giri NARASIMHAN

 www.cs.fiu.edu/~giri/teach/5407S19.html
2 Momentos

- Slides and Audio online
- Need to register
- Go to https://fiu.momentos.life
- If you don't already have an account
- Click on "Sign up"
- Follow instructions \& use referral code: XLY6FD
- If you have an account, "Add Course" with course name and referral code XLY6FD
- Verify account using link sent to email

Person of the Year ...

The first hundred votes ...

Who won

 majority?| 48 | 12 | 9 | 12 | 23 | 12 | 22 | 12 | 12 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 48 | 93 | 93 | 93 | 12 | 12 | 93 | 12 | 93 | 12 |
| 12 | 93 | 48 | 48 | 12 | 12 | 12 | 33 | 79 | 12 |
| 12 | 12 | 93 | 12 | 12 | 9 | 12 | 23 | 12 | 12 |
| 12 | 12 | 12 | 33 | 93 | 93 | 93 | 12 | 12 | 12 |
| 12 | 9 | 12 | 23 | 93 | 48 | 48 | 12 | 12 | 44 |
| 93 | 93 | 93 | 12 | 12 | 9 | 12 | 23 | 12 | 55 |
| 12 | 12 | 48 | 12 | 48 | 48 | 12 | 48 | 88 | 12 |
| 12 | 12 | 93 | 12 | 12 | 9 | 12 | 23 | 12 | 12 |
| 12 | 12 | 17 | 3.3 | 93 | 93 | 93 | 12 | 12 | 12 |

Every number in the table corresponds to a vote for a person with that ID ${ }^{-}$

5) Standard Approaches

- Keep a list of candidates and their counts
- Every vote needs to be compared against every candidate in the worst case

Sort the list and count

- Sorting is the bottleneck
- Can we avoid sorting?

Wacky Ideas, anyone?

- What if I pick two random votes and they turn out to be different?
- Discard and reduce the problem size What if I pick two random votes and they are the same?
- Well, this needs work and you will need to think about it!

48	12	9	12	23	12	22	12	12	12
40	93	93	93	12	12	93	12	93	12
12	93	48	48	12	12	12	33	79	12
12	12	93	12	12	9	12	23	12	12
12	12	12	33	93	93	93	12	12	12
12	9	$\overline{12}$	23	93	48	48	12	12	44
93	93	93	12	$\overline{12}$	9	$\overline{12}$	23	12	55
12	12	48	12	$\overline{48}$	48	12	48	88	12
12	12	93	12	$\overline{12}$	9	12	23	12	12
12	12	$\overline{12}$	33	93	93	93	12	12	12

Text

3rd Edition
 - ISBN-13:
 978-8120340077
 - ISBN-10:
 9788120340077

Evaluation

- Exams (2)
- Quizzes HW Assignments 30\% Semester Project 5\%
- Class Participation 5\%
- Kattis Submissions 5\% (Extra Credit)

50\%
10\%

Kattis

- Repository of problems
- Programming solutions can be uploaded Build a profile of problems solved by you Weekly mock competitions on Saturdays
- E.g., FIU-SCIS-12JAN2019 (from noon to 5 PM)

What you should already know ...

- Array Lists
- Linked Lists

Sorted Lists

- Stacks and Queues
- Basic Sorting Algorithms
- Trees
- Binary Search Trees
- Heaps and Priority Queues
- Graphs
- Adjacency Lists
- Adjacency Matrices

History of Algorithms

- Euclid, 300 BC
- Bhaskara, $6^{\text {th }} \mathbf{c}$
- Al Khwarizmi, 9th c

Fibonacci, 13th c
Gauss, 18-19th c

- Babbage, 19th c
- Turing, 20th c
- von Neumann, 20th c
- Knuth, Karp, Tarjan, Rabin, ..., 20-21st c

Gauss - sum of series

- $1+2+3+\ldots+N$
- Gauss observed that
- $1+N=N+1$
- $2+N-1=N+1$
- ...

Thus,

- $1+2+3+\ldots+N$
- $=(2+3+\ldots+\mathrm{N}-1)+(\mathrm{N}+1)$
- $=(3+\ldots+\mathrm{N}-2)+(\mathrm{N}+1)+(\mathrm{N}+1)$
- Keep reducing until when?
- Depends on whether N is even/ odd
- If N is even:

$$
=(N+1) N / 2=N(N+1) / 2
$$

- If \mathbf{N} is odd:

$$
=(N+1)(N-1) / 2+(N+1) / 2=N(N+1) /
$$ 2

Al Khwarizmi's algorithm

```
- 43 X 17
    - 43 17
- 21 34
- 10 68 (ignore)
- 5 136
- 2 272 (ignore)
- 1 544
7 3 1
```


15) Euclid's Algorithm

- $\operatorname{GCD}(12,8)=4 ; \operatorname{GCD}(49,35)=7$;
- $\quad \operatorname{GCD}(210,588)=? ?$
- $\quad \operatorname{GCD}(\mathrm{a}, \mathrm{b})=$??
- Observation: [a and b are integers and $a \geq b]$ - GCD $(a, b)=\operatorname{GCD}(a-b, b)$
- Euclid's Rule: [a and bare integers and $a \geq b$] - GCD (a, b) = GCD (a mod b, b)
- Euclid's GCD Algorithm:
- GCD(a,b)

If $(b=0)$ then return a; return $\operatorname{GCD}(\mathrm{a} \bmod \mathrm{b}, \mathrm{b})$
(C) OriginalAstist

Reproduction rights obtaimable from
wwow Cartannstad cam

"Calculus is my new Versace. I get a buzz from algorithms. What's going on with ae, Raymond?

Search

- You are asked to guess a number X that is known to be an integer lying in the range A through B. How many guesses do you need in the worst case?
- Use binary search; Number of guesses $=\log _{2}(B-A)$
- You are asked to guess a positive integer X. How many guesses do you need in the worst case?
- NOTE: No upper bound is known for the number.
- Algorithm:
- figure out B (by using Doubling Search)
- perform binary search in the range $B / 2$ through B.
- Number of guesses $=\log _{2} B+\log _{2}(B-B / 2)$
- Since X is between $B / 2$ and B, we have: $\log _{2}(B / 2)<\log _{2} X$,
- Number of guesses < $2 \log _{2} \mathrm{X}$ - 1

${ }^{18}$ Polynomial Evaluation

- Given a polynomial
- $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}$
compute the value of the polynomial for a given value of x.
How many additions and multiplications are needed?
- Simple solution:
- Number of additions = \mathbf{n}
- Number of multiplications $=1+2+\ldots+n=n(n+1) / 2$
- Reusing previous computations: \mathbf{n} additions and $2 \mathbf{n}$ multiplications!
- Improved solution using Horner's rule:
- $\left.p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots x\left(a_{n-1}+x a_{n}\right)\right) \ldots\right)\right)$
- Number of additions = n
- Number of multiplications $=\mathbf{n}$

Definitions

Abstract Problem: defines a function from any allowable input to a corresponding output

Instance of a Problem: a specific input to abstract problem
Algorithm: well-defined computational procedure that takes an instance of a problem as input and produces the correct output An Algorithm must halt on every input with correct output.

${ }^{20}$ Sorting

- Input is a sequence of n items that can be compared.
- Output is an ordered list of those n items
- I.e., a reordering or permutation of the input items such that the items are in sorted order
- Fundamental problem that has received a lot of attention over the years.

Used in many applications.

- Scores of different algorithms exist.
- Task: To compare algorithms
- On what bases?
- Time
- Space
- Other

21) Sorting Algorithms

- Number of Comparisons
- Number of Data Movements

Additional Space Requirements

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket \& Radix Sort
- Counting Sort

