COT 5407: Introduction to Algorithms Giri NARASIMHAN

 www.cs.fiu.edu/~giri/teach/5407S19.html
2. Definitions

Abstract Problem: defines a function from any allowable input to a corresponding output

Instance of a Problem: a specific input to abstract problem
Algorithm: well-defined computational procedure that takes an instance of a problem as input and produces the correct output An Algorithm must halt on every input with correct output.

3
 Sorting

- Input is a sequence of n items that can be compared.
- Output is an ordered list of those n items
- I.e., a reordering or permutation of the input items such that the items are in sorted order
- Fundamental problem that has received a lot of attention over the years.

Used in many applications.

- Scores of different algorithms exist.
- Task: To compare algorithms
- On what bases?
- Time
- Space
- Other

Sorting Algorithms

- Number of Comparisons
- Number of Data Movements

Additional Space Requirements

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort

ShakerSort
MergeSort

- HeapSort
- QuickSort
- Bucket \& Radix Sort
- Counting Sort

Worst-Case Time Analysis

- Two Techniques:

1. Counts and Summations:

- Count number of steps from pseudocode and add

2. Recurrence Relations:

- Use invariant, write down recurrence relation and solve it
- We will use big-Oh notation to write down time and space complexity (for both worst-case \& average-case analyses).
- Compute worst possible time of all input instances of length \mathbf{N}.

Definition of big-Oh

- We say that
- $\mathrm{F}(\mathrm{n})=\mathrm{O}(\mathrm{G}(\mathrm{n})$)

If there exists two positive constants, c and n_{0}, such that

- For all $n \geq n_{0}$, we have $F(n) \leq c G(n)$
- Thus, to show that $F(n)=O(G(n))$, you need to find two positive constants that satisfy the condition mentioned above
- Also, to show that $\mathrm{F}(\mathrm{n}) \neq \mathrm{O}(\mathrm{G}(\mathrm{n}))$, you need to show that for any value of c, there does not exist a positive constant n_{0} that satisfies the condition mentioned above

8. SelectionSort - Worst-case analysis

```
SelectionSort(array A)
1 N}\leftarrowllength [A
2 for }p\leftarrow1\mathrm{ to }
    do \ Compute j
        j}\leftarrow
        for }m\leftarrowp+1\mathrm{ to }
        do if }\begin{array}{c}{(A[m]<A[j])}\\{\mathrm{ then j &m}}
        \wap A[p] and A[j]
        temp}\leftarrowA[p
    Ap]}\leftarrowA[j
    Aj]}\leftarrow\ellem
                            N-p comparisons
                            3 data movements
```


9
 SelectionSort: Worst-Case Analvsic

- Data Movements

$$
=\sum_{p=1}^{N} 3=3 \times N=O(N)
$$

- Number of Comparisons

$$
\begin{aligned}
& =\sum_{p=1}^{N}(N-p) \\
& =\sum_{p=1}^{N} N-\sum_{p=1}^{N} p \\
& =(N \times N)-(N)(N+1) / 2 \\
& =O\left(N^{2}\right)
\end{aligned}
$$

- Time Complexity $=\mathbf{O}\left(\mathbf{N}^{2}\right)$

SelectionSort - Space Complexity

SelectionSort (array A)
$1 \quad N \leftarrow$ length $|A|$
2 for $p \leftarrow 1$ to N
do $>$ Compute j
3
4
5
6

7
8
9
$j \leftarrow p$
for $m \leftarrow p+1$ to N do if $(A[m]<A[j])$ then $j \leftarrow m$
\square Swap $A[p]$ and $A[j]$ temp $\leftarrow A[p]$
$A p] \leftarrow A[j]$

$$
A j] \leftarrow l e m p
$$

- Temp Space
- No extra arrays or data structures
- $O(1)$

Invariant for SelectionSort

- An appropriate invariant has a parameter related to the progress of the algorithm (e.g., iteration number)
- An appropriate invariant helps in proving algorithm is correct
- "At the end of iteration p, the p smallest items are in their correct location"

12. MergeSort

- Divide-and-Conquer Strategy
- Divide array into two sublists of roughly equal length
- Sort each sublist "recursively"

Merge two sorted lists to get final sorted list

- Assumption: Merging is faster than sorting from fresh
- Most of the work is done in merging
- Process described using a tree
- Top-down process: Divide each list into 2 sublists
- Bottom-up process: Merge two sorted sublists into one sorted sublist

Copyright \odot The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
sorted sequence

MergeSort

1	2	2	3	4	5	6	7

Figure 2.4 The operation of merge sort on the array $A=\langle 5,2,4,7,1,3,2,6)$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a)

(c)

(b)

(d)

Figure 2.3 The operation of lines $10-17$ in the call $\operatorname{Merge}(A, 9,12,16)$, when the subarray $A[9 . .16]$ contains the sequence $\langle 2,4,5,7,1,2,3,6)$. After copying and inserting sentinels, the array L contains $(2,4,5,7, \infty)$, and the array R contains $(1,2,3,6, \infty)$. Lightly shaded positions in A contain their final values, and lightly shaded positions in L and R contain values that have yet to be copied back into A. Taken together, the lightly shaded positions always comprise the values originally in $A[9 \ldots 16]$, along with the two sentinels. Heavily shaded positions in A contain values that will be copied over, and heavily shaded positions in L and R contain values that have already been copied back into A. (a)-(h) The arrays A, L, and R, and their respective indices k, i, and j prior to each iteration of the loop of lines $12-17$. (i) The arrays and indices at termination. At this point, the subarray in $A[9 \ldots 16]$ is sorted, and the two sentinels in L and R are the only two elements in these arrays that have not been copied into A.

(e)
(f)

Assumption: Array A is sorted from [p..q] and from $[q+1 . . r]$.

$$
\begin{aligned}
& n_{1} \leftarrow q-p+1 \\
& n_{2} \leftarrow r-q
\end{aligned}
$$

$$
\text { create arrays } L\left[1 \ldots n_{1}+1\right] \text { and } R\left[1 \ldots n_{2}+1\right]
$$

$$
\text { for } i \leftarrow 1 \text { to } n_{1}
$$

$$
\text { do } L[i] \leftarrow A[p+i-1]
$$

$$
\text { for } j \leftarrow 1 \text { to } n_{2}
$$

$$
\text { do } R[j] \leftarrow A[q+j]
$$

$$
L\left[n_{1}+1\right] \leftarrow \infty
$$

$$
R\left[n_{2}+1\right] \leftarrow \infty
$$

Merge: The smaller of the item in L and item in R is moved to next location in A

Space: Two extra arrays L and R are
used.

Sentinel Items: Two sentinel items placed in lists L and R.

$$
i \leftarrow 1
$$

$$
j \leftarrow 1
$$

$$
\text { for } k \leftarrow p \text { to } r
$$

$$
\text { do if } L[i] \leq R[j]
$$

$$
\text { then } A[k] \leftarrow L[i]
$$

$$
i \leftarrow i+1
$$

$$
\text { else } A[k] \leftarrow R[j]
$$

$$
j \leftarrow j+1
$$

MergeSort

$\operatorname{MERGE}-\operatorname{Sort}(A, p, r)$
1 if $p<r$
2 then $q \leftarrow\lfloor(p+r) / 2\rfloor$
3
4
$\operatorname{MErge-Sort}(A, p, q)$
$\operatorname{Merge-Sort}(A, q+1, r)$
5 $\operatorname{Merge}(A, p, q, r)$

Time Complexity Recurrence: $\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{O}(\mathrm{N})$

Invariants, Continued ...

- What is the right invariant for MergeSort?

Solving Recurrence Relations

Recurrence; Cond	Solution
$T(n)=T(n-1)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-1)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=T(n-c)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-c)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=2 T(n / 2)+O(n)$	$T(n)=O(n \log n)$
$\begin{gathered} T(n)=a T(n / b)+O(n) ; \\ a=b \end{gathered}$	$T(n)=O(n \log n)$
$\begin{gathered} T(n)=a T(n / b)+O(n) \\ a<b \end{gathered}$	$T(n)=O(n)$
$\begin{gathered} T(n)=a T(n / b)+f(n) ; \\ f(n)=O\left(n^{\log _{b} a-\epsilon}\right) \end{gathered}$	$T(n)=O(n)$
$\begin{gathered} T(n)=a T(n / b)+f(n) ; \\ f(n)=O\left(n^{\log _{b} a}\right) \end{gathered}$	$T(n)=\Theta\left(n^{\log _{l} a} \log n\right)$
$\begin{gathered} T(n)=a T(n / b)+f(n) ; \\ f(n)=\Theta(f(n)) \\ a f(n / b) \leq c f(n) \end{gathered}$	$T(n)=\Omega\left(n^{\log _{b} a} \log n\right)$

Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
- Write down the recurrence as a tree with recursive calls as the children
- Expand the children
- Add up each level
- Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method

Copyright © The McGraw－Hill Companies，Inc．Permission required for reproduction or display．
$\pi(0)$

（b）
（c）

ぱい + ど

Higure 2．5 The constriktion at a ravision tiee for the resemenet $\tau(w)=2 T(a / 2)+$ f．t． Part（a）showx $Y(n)$ ，whish is（enewessinely expmoded in（b）－id）io form the recursinn tree．The

Copyright \odot The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21

$T(n)$

(a)
(b)
(c)

Figure 4.2 A recursion tree for the recurrence $T(n)=T(n / 3)+T(2 n / 3)+c n$.

Solving Recurrences using Master Theorem

Master Theorem:

Let $a, b>=1$ be constants, let $f(n)$ be a function, and let

$$
T(n)=a T(n / b)+f(n)
$$

1. If $f(n)=O\left(n^{\log _{b} a-e}\right)$ for some constant $e>0$, then

- $T(n)=$ Theta $\left(n^{\log _{b}}{ }^{a}\right)$

2. If $f(n)=$ Theta $\left(\log _{b} a\right)$, then

- $T(n)=T h e t a\left(n^{\log _{b} a} \log n\right)$

3. If $f(n)=O m e g a\left(n^{\log _{b}}{ }^{a+e}\right)$ for some constant $e>0$, then

- $T(n)=\operatorname{Theta}(f(n))$

