COT 5407: Introduction

to Algorithms

Giri NARASIMHAN
www.cs fiu.edu/~giri/teach/5407S19.htmi

http://www.cs.fiu.edu/~giri/teach/5407S19.html

Homework

» Read Guidelines and Follow Instructions!
» Statement of Collaboration

» Take it seriously.

» |[f true, reproduce the statement faithfully.

» For each problem, explain separately the sources and your
collaborations with other people.

= Your homework will not be graded without the statement.

=» Extra Credit Problem

= You can turn it in any time within a month or until last class day,
whichever is earlier.

» |f you are not sure of your solution, don’t waste my time.
You will NOT get partial credit on an extra credit problem.
» Submit it separately and label it appropriately.

COT 5407

1/24/17

Definition of big-Oh

= We say that F(n) = O(G(n)), = We say that F(n) = ©(G(n)),
» |f there exists two positive constants, ¢ » |f F(n) = O(G(n)) and F(n) = Q(G(n))

R ch ihat = We say that F(n) = &(G(n)),
» Fof alln 2 n, we have F(n) < c G(n) = If F(n) = Q(G(n)), but F(n) # ©(G(n))

= Wéeé say that F(n) = Q(G(n)), » We say that F(n) = o(G(n)),
If there exists two positive constants, ¢ » |f F(n) = O(G(n)), but F(n) # ©(G(n))

and n,, such that

» Foralln2n, we have F(n) 2 c G(n)

COT 5407 8/28/07

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28(n) cg(n)
= e
o 7 5 ¢
v f(n i
/ //’ // ;):(I!]
G = cian) \/// e
" e i -
/: ,// /// ' L/ NS
e A o, N '
/’ ‘ j
- ’150 — nl n
() = B{g(n)) * f) = 0Gm))
(a) (h)

| —
/

/
i
<

cg(n)
iespidud 3

L
Ro ., ’ :
Jn) = (gn))

)

Figure 3.1 Giuphic examples of the ©, 7, and € norations. In each part, the value of no SNOWN is
the minimum possible value; any greater value would also work. (a) ©-nctation bounds a furction
within constant factors. We write f(n) = @(g(n)) if therz exist positive constants 2, ¢|, and ¢2 such
that to the r:ght of ng, the velue of £ (n) always lics between ¢y 2(n) and a2 (n) inclusive. () (2-
notation gives an upper hound for a function to within a censtant factor. We write f (n) = Oigin))
if there are positive constants np and ¢ such that to the right of np, the value of () always lies on
or below cg(a). () ©2-notarion gives a lower bound for a function o within a constant facter. We
write f(n) = Q(g(n)) if there are positive constants ng and ¢ such (hat o the right of ng, the value

0F f(n) always lies on or above ¢g(n).

COT 5407

9/4/08

Storing binary trees as arrays
FON

20| 7 | 38| 4 | 16 | 37 | 43

OOOOOOO

Heaps (Max-Heap)

43 | 16 {38 | 4 | 7 | 37 | 20

43 | 16 | 38 | 4 7 | 37|20 | 2 3 6 1 | 30

/

HEAP represents a complete binary tree stored as an array such that:
« HEAP PROPERTY: Parent value is > child’s value

Complete Binary Tree:

* Tree is filled on all levels except the last level

* Last level is filled from left to right

* Left & right child of i are in locations 2i and 2i+1

COT 5407 1/24/17

HeapSort

= First convert array into a heap (BUILD-MAX-
HEAP, p157)

Then convert heap into sorted array
(HEAPSORT, p160)

OOOOOOO

Animation Demos

hitp://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1 /heapsort.himl

http://cg.scs.carleton.ca/~morin/misc/sortalg/

COT 5407 1/24/17

HeapSort: Part 1

MaxX-HEAPIFY array A.int 1)

> Assume subtiee rooted at @ is not a heap;

> but subtrees rooted at children of 7 are heaps
1 |« LEFTJi
2 r « RIGHT]]]
3 if ((I < heap-sizelA]) and (A[l > Ali]))
4 then largest <!
5 else largest « 1
¢ if ((r < heap-size|A]) and (Alr] > A[largest]))
7 then largest <« r
& il (largest # i)
9 then exchange Ali] < Allargest] 154, CIRS
« 10 MAX-HEAPIFY(A, largest) 12417

Analysis of Max-Heapify

= T(N) < T(2N/3) + O(1)

o |) = When called on node i,
TAX-HeEAPIFY array A.int 2 ° ® A -
> Assume su:)tlc"v (1}()()'(.(‘-(1 at)a is not a heap; eli.her III. termlnqtes W"h

> bDut subtrees rooted at caildren of 7 are heaps
1 (< Lerr(] O(1) steps or makes a
2 r «— RIGHT[{]

if ((I < heap-sizel|A]) and (A[l = AlZ])) recurSive Cq" on nOde

then largest «— 1

else largest «—— @ qlll Iower Ievel

1

E if ((r << heap size[A]) and (Alr] > Allargest]))

AR s » At most 1 call per level
8 i (largesi #)

then exchange Alz] «— A[largest]

lz: MAX-HEAPIFY (A, largest) » Time COmp|eXi'|'y =
O(level of node i) =
O(h;) = O(logN) ...

HeapSort: Part 2

BuiLD-MAX-HEAP(array A)

1 heap-size|A| «— length|A]
2 fori « |length|A|/2] downto 1
3 do MAX-ITEAPIFY(A,)

1/24/17

HeapSort: Part 2

BUILD-MAX-HEAP(array A)

1 heap-size|A| «— length|A]

2 fori « |length|A|/2] downto 1
3 do MAX-ITEAPIFY (A, 7)

HEAPSORT(array A)

1 BuiLD-MAX-HEAP(A)

2 fori — length|A] downto 2

3 do exchange A[l] < A[i] Total:

4 heap-size[A] «— heap-size[A] — 1} OU0a N O(nlog n)
3 MAX-HEAPIFY (A, 1)

1/24/17

HeapSort: Part 2

BUiLD-MAX-HEAP(array A)

1 heap-size[A] — length[A]

2 fori « |length|A|/2] downto 1
3 do MAX-TITEAPIFY(A,7)

= For n/2 nodes, height is 1 and # of comparisons =0,

For n/4 nodes, height is 2 and # of comparisons = 1,

For n/8 nodes, height is 3 and # of comparisons = 2, ...
Total = summation ((height -1) X # of nodes at that height)
Total = summation ((height — 1) X N/2height)

Total £ summation (height X N/2height)

Total £ N X summation (height X 1/2height)

COT 5407 1/24/17

Build-Max-Heap Analysis

| log nt|]
)
We need to compute: n X Z)
h=0 *
oC 1
We know that Z =
k=0 l -z
o0 1
Differentiating both sides, we get Y ka*™' = -
be=0 (1 — .T)-
— T
Multiplying both sides by x, we get Z ket = —
=0 (1-x)°
|log n| h
Setting x = 1/2, we can show that ’E: on S 2
1=0 =

COT 5407 1/24/17

HeapSort

BuiLpD-MAX-HeAP(array A) o Slngle. Cq" II.O .qu- .
heap-size| A| «— length|A] Heqplfy runs In O(h) IIllme

1
2 for i «— |length[A]/2] downto 1
3 do MAX-TIEAPIFY(.A. z2)

=» However, Build-Max-

1 BuiLD-MAX-HeEADPr(A) o

2 for i «— length|A] downto 2 » Hedpsorf I'UﬂS IN O(n IOg
3 do exchange A[l] < AJZ] .

4 heap-size[A| «— heap-size|A] — 1 n) II'Ime

5 MAX-HEAPIFY(A, 1)

COT 5407 1/24/17

Sorting Algorithms

O(N logN)

Bucket & Radix Sort -
Counting Sort

COT 5407 1/24/17

» SelectionSort

» |nserfionSort

» BubbleSort i =
» QuickSort 8o
» MergeSort Worst Case: SEZS'
»

»

»

Upper and Lower Bounds

» Time Complexity of a Problem

» Difficulty: Since there can be many algorithms that solve a problem, what time
complexity should we pick?

®» Solution: Define upper bounds and lower bounds within which the time complexity lies.
=~ What is the upper bound on time complexity of sorting?

» Answer: Since SelectionSort runs in worst-case O(N2) and MergeSort runs in O(N log N),
either one works as an upper bound.

» Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e.,
time complexity of the best algorithm.

=» What is the lower bound on fime complexity of sorting?

= Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no
algorithm that sorts N items can run in worst-case time o(f(N)).

COT 5407 1/19/17

Lower Bounds

= |'s possible to prove lower bounds for many comparison-based
problems.

= For comparison-based problems, for inputs of length N, if there are P(N)
possible solutions, then

any algorithm needs IobnggNn to }olve the problem.

Binary Search on a list of N items has at least N + 1 possible solutions.
Hence lower bound is

» |og,(N+1).
= Sorting a list of N items has at least N! possible solutions. Hence lower
bound is
= |og,(N!)=O(N log N)
= Thus, MergeSort is an optimal algorithm.
» Because its worst-case time complexity equals lower bound!

COT 5407 1/19/17

Beating the Lower Bound

= Bucket Sort
» Runs in fime O(N+K) given N integers in range [a+1, a+K]
If K= O(N), we are able to sort in O(N)
How is it possible to beat the lower bound?
Only because we know more about the data.
= |f nothing is know about the data, the lower bound holds.
= Radix Sort
= Runs in time O(d(N+K)) given N items with d digits each in range [1,K]
=» Counting Sort
= Runs in time O(N+K) given N items in range [a+1, a+K]

COT 5407 1/24/17

Bucket Sort

= N integer values in the range [a..a+m-1]
= For e.g., sort a list of 50 scores in the range [0..9].

» Algorithm

» Make m buckets [a..a+m-1]

» As you read elements throw into appropriate bucket
» Output contents of buckets [0..m] in that order

» Time O(N+m)
» Warning: This algorithm cannot be used for “infinite-

precision” real numbers, even if the range of values is
specified.

COT 5407 1/24/17

Stable Sort

» A sort is stable if equal elements appear in
the same order in both the input and the
output.

=» Which sorts are stable?

OOOOOOO

Radix Sort

3509 3509 33 6 336
357 357 35 9 3 51
351 351 35 7 355
7 39 ‘336 ‘ 35 1 ‘ 3 57
3 36 355 35 5 3509
720 7 39 7 120 720
355 720 7I9 8 3 9
Algorithm

fori=1toddo
sort array A on digit i using any sorting algorithm

Time Complexity: O((N+m) + (N+m2) + ...+ (N+md))

Space Complexity: O(md)

COT 5407 1/24/17

Radix Sort

329 720 7 20 329
4 5 7 355 329 355
6 5 7 4 3 6 4 3 6 4 3 6
8 3 9 ‘ 4 5 7 ‘ 8 3 9 ‘ 4 5 7
4 3 6 6 5 7 355 6 5 7
7 20 3209 4 5 7 7 20
355 8 3 9 6 5 7 8 3 9
Algorithm Time Complexity: O((n+m)d)

fori=1toddo
sort array A on digit i using a stable sort algorithm

*Warning: This algorithm cannot be used for “infinite-precision”
s, | Peal numbers, even if the range of values is specified. .y

Counting Sort

COT 5407

Initial Array

Counts O 1 2 3 4 5

Cumulative ol1 1213 1415
Counts

2 12 |4 |7 |7 |8

-Warning: This algorithm cannot be used for “infinite-precision”

real numbers, even if the range of values is specified.

1/24/17

