COT 5407: Introduction to Algorithms Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407S19.html

CAP 5510 / CGS 5166

Homework

- Read Guidelines and Follow Instructions!
- Statement of Collaboration
 - Take it seriously.
 - If true, reproduce the statement faithfully.
 - For each problem, explain separately the sources and your collaborations with other people.
 - Your homework will not be graded without the statement.
- Extra Credit Problem
 - You can turn it in any time within a month or until last class day, whichever is earlier.
 - If you are not sure of your solution, don't waste my time.
 - You will NOT get partial credit on an extra credit problem.
 - Submit it separately and label it appropriately.

Definition of big-Oh

We say that F(n) = O(G(n)),

- If there exists two positive constants, c and n₀, such that
- For all $n \ge n_0$, we have $F(n) \le CG(n)$
- We say that $F(n) = \Omega(G(n))$,
 - If there exists two <u>positive</u> constants, c and n₀, such that
 - For all $n \ge n_0$, we have $F(n) \ge c G(n)$

- We say that F(n) = O(G(n)),
 - If F(n) = O(G(n)) and $F(n) = \Omega(G(n))$
- We say that $F(n) = \omega(G(n))$,
 - If $F(n) = \Omega(G(n))$, but $F(n) \neq \Theta(G(n))$
- We say that F(n) = o(G(n)),
 - If F(n) = O(G(n)), but $F(n) \neq O(G(n))$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0, c_1 , and c_2 such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) Onotation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n))if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or above cg(n).

Storing binary trees as arrays

20	7	38	4	16	37	43
----	---	----	---	----	----	----

Heaps (Max-Heap)

43	16	38	4	7	37	20	2	3	6	1	30
----	----	----	---	---	----	----	---	---	---	---	----

HEAP represents a complete binary tree stored as an array such that:

• <u>HEAP PROPERTY</u>: Parent value is ≥ child's value

Complete Binary Tree:

- Tree is filled on all levels except the last level
- Last level is filled from left to right
- Left & right child of i are in locations 2i and 2i+1

HeapSort

First convert array into a heap (BUILD-MAX-HEAP, p157)

Then convert heap into sorted array (HEAPSORT, p160)

⁸ Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

COT 5407

HeapSort: Part 1

MAX-HEAPIFY(array A, int i)

- \triangleright Assume subtree rooted at *i* is not a heap;
- \triangleright but subtrees rooted at children of *i* are heaps
- 1 $l \leftarrow \text{LEFT}[i]$

9

- 2 $r \leftarrow \text{Right}[i]$
- 3 if $((l \leq heap-size[A]) and (A[l] > A[i]))$ 4
 - then $largest \leftarrow l$
- 5 else $largest \leftarrow i$
- if $((r \leq heap-size[A]) and (A[r] > A[largest]))$ 6
 - **then** $largest \leftarrow r$
- if $(largesl \neq i)$ 8
- **then** exchange $A[i] \leftrightarrow A[largest]$ 9
- MAX-HEAPIFY(A, largest)10

p154, CLRS

Analysis of Max-Heapify

MAX-HEAPIFY(array A, int i)

 \triangleright Assume subtree rooted at *i* is not a heap;

 \triangleright but subtrees rooted at children of *i* are heaps

- $l \leftarrow \text{LEFT}[i]$
- $r \leftarrow \text{Right}[i]$ 2

3 if
$$((l \leq heap-size[A]) and (A[l] > A[i]))$$

- 4 then $largest \leftarrow l$
- 5 else $largest \leftarrow i$

6 if
$$((r \leq heap-size[A]) and (A[r] > A[largest]))$$

7 **then**
$$largest \leftarrow r$$

- if $(largesl \neq i)$ 8
- **then** exchange $A[i] \leftrightarrow A[largest]$ 9

Max-HEAPIFY(A, largest)10

- $T(N) \le T(2N/3) + O(1)$
- When called on node i, either it terminates with O(1) steps or makes a recursive call on node at lower level
- At most 1 call per level
- Time Complexity = O(level of node i) = $O(h_i) = O(\log N)$ 1/24/17

11

HeapSort: Part 2

BUILD-MAX-HEAP(array A)

- $1 \quad heap-size[A] \leftarrow length[A]$
- 2 for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3 **do** Max-Heapify(A, i)

HeapSort: Part 2

BUILD-MAX-HEAP(array A)

- $heap-size[A] \leftarrow length[A]$
- for $i \leftarrow |length[A]/2|$ downto 1 $\mathbf{2}$
- 3 do Max-Heapify(A, i)

HEAPSORT(array A)

5

- BUILD-MAX-HEAP(A)
- for $i \leftarrow length[A]$ downto 2 2
- 3 4
- do exchange $A[1] \leftrightarrow A[i]$ $heap-size[A] \leftarrow heap-size[A] 1$ MAX-HEAPIFY(A, 1)O(log n)

Total: O(nlog n)

HeapSort: Part 2

13

BUILD-MAX-HEAP(array A)1 $heap-size[A] \leftarrow length[A]$ 2 for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1 3 do MAX-HEAPIFY(A, i)

- For n/2 nodes, height is 1 and # of comparisons = 0,
- For n/4 nodes, height is 2 and # of comparisons = 1,
- For n/8 nodes, height is 3 and # of comparisons = 2, ...
- Total = summation ((height -1) X # of nodes at that height)
- Total = summation ((height 1) X N/2^{height})
- Total ≤ summation (height X N/2^{height})
- Total \leq N X summation (height X 1/2^{height})

Build-Max-Heap Analysis

We need to com

М

The properties
$$n \times \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}$$
 Build-Max-Heap: O(n)
We know that $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$
Differentiating both sides, we get $\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$
Multiplying both sides by x , we get $\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$
Setting $x = 1/2$, we can show that $\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \leq 2$

COT 5407

15

HeapSort

Build-Max-Heap(array A)

- $1 \quad heap-size[A] \leftarrow length[A]$
- 2 for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3 do Max-Heapify(A, i)

- Single call to Max-Heapify runs in O(h) time
- However, Build-Max-Heap runs in O(n) time
- HeapSort runs in O(n log n) time

Sorting Algorithms

COT 5407

Upper and Lower Bounds

- Time Complexity of a Problem
 - Difficulty: Since there can be many algorithms that solve a problem, what time complexity should we pick?
 - Solution: Define upper bounds and lower bounds within which the time complexity lies.
- What is the upper bound on time complexity of sorting?
 - Answer: Since SelectionSort runs in worst-case O(N²) and MergeSort runs in O(N log N), either one works as an upper bound.
 - Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e., time complexity of the best algorithm.
- What is the lower bound on time complexity of sorting?
 - Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no algorithm that sorts N items can run in worst-case time o(f(N)).

Lower Bounds

- It's possible to prove lower bounds for many comparison-based problems.
- For comparison-based problems, for inputs of length N, if there are P(N) possible solutions, then
 - any algorithm needs $\log_2(P(N))$ to solve the problem.
- Binary Search on a list of N items has at least N + 1 possible solutions. Hence lower bound is
 - $\log_2(N+1).$
- Sorting a list of N items has at least N! possible solutions. Hence lower bound is
 - $\square \log_2(N!) = O(N \log N)$
- Thus, MergeSort is an optimal algorithm.
 - Because its worst-case time complexity equals lower bound!

COT 5407

Beating the Lower Bound

Bucket Sort

- Runs in time O(N+K) given N integers in range [a+1, a+K]
- If K = O(N), we are able to sort in O(N)
- How is it possible to beat the lower bound?
- Only because we know more about the data.
- If nothing is know about the data, the lower bound holds.
- Radix Sort
 - Runs in time O(d(N+K)) given N items with d digits each in range [1,K]
- Counting Sort
 - Runs in time O(N+K) given N items in range [a+1, a+K]

Bucket Sort

- N integer values in the range [a..a+m-1]
- For e.g., sort a list of 50 scores in the range [0..9].

Algorithm

- Make m buckets [a..a+m-1]
- As you read elements throw into appropriate bucket
- Output contents of buckets [0..m] in that order
- Time O(N+m)
- Warning: <u>This algorithm cannot be used for "infinite-precision" real numbers, even if the range of values is specified.</u>

Stable Sort

A sort is stable if equal elements appear in the same order in both the input and the output.

Which sorts are stable?

Radix Sort

Algorithm

for i = 1 to d do

sort array A on digit i using any sorting algorithm

Time Complexity: $O((N+m) + (N+m^2) + ... + (N+m^d))$

Space Complexity: O(md)

Radix Sort

Algorithm

Time Complexity: O((n+m)d)

for i = 1 **to** d **do**

sort array A on digit i using a stable sort algorithm

• Warning: <u>This algorithm cannot be used for "infinite-precision"</u> real numbers, even if the range of values is specified.

Counting Sort

• Warning: <u>This algorithm cannot be used for "infinite-precision"</u> real numbers, even if the range of values is specified.