COT 5407: Introduction to Algorithms Giri NARASIMHAN

 www.cs.fiu.edu/~giri/teach/5407S19.html
2
 Homework

- Read Guidelines and Follow Instructions!
- Statement of Collaboration
- Take it seriously.
- If true, reproduce the statement faithfully.
- For each problem, explain separately the sources and your collaborations with other people.
- Your homework will not be graded without the statement.
- Extra Credit Problem
- You can turn it in any time within a month or until last class day, whichever is earlier.
- If you are not sure of your solution, don't waste my time.
- You will NOT get partial credit on an extra credit problem.
- Submit it separately and label it appropriately.

Definition of big-Oh

- We say that $F(n)=O(G(n))$,
- If there exists two positive constants, c and n_{0}, such that
- For all $n \geq n_{0}$, we have $F(n) \leq c G(n)$
- We say that $F(n)=\Omega(G(n))$,

If there exists two positive constants, c and n_{0}, such that

- For all $n \geq n_{0}$, we have $F(n) \geq c G(n)$
- We say that $F(n)=\Theta(G(n))$,
- If $F(n)=O(G(n))$ and $F(n)=\Omega(G(n))$
- We say that $F(n)=\omega(G(n))$,
- If $F(n)=\Omega(G(n))$, but $F(n) \neq \Theta(G(n))$
- We say that $F(n)=o(G(n))$,
- If $F(n)=O(G(n))$, but $F(n) \neq \Theta(G(n))$

(a)

(b)

(c)

Figure 3.1 Graphic examples of the Θ, O, and Ω notations. In each part, the value of n_{0} shown is the minimum possible value; any greater value would also work. (a) θ-nctation bounds a function it within constant factors. We write $f(n)=\Theta(g(n))$ if there exist positive constants n_{0}, c_{1}, and c_{2} such that to the right of n_{0}, the value of $f(n)$ alvays lies between $c_{1} g(n)$ and $c_{2} g(n)$ inclusive. (b) a notation gives an upper bound for a function to within a constant factor. We write $f(n)=O(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on 0 : below $c g(n)$. (c) Ω-notation gives a lower bound for a function to within a constant factor. We write $f(n)=\Omega(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or above $c g(n)$.

Storing binary trees as arrays

20	7	38	4	16	37	43

Heaps (Max-Heap)

43	16	38	4	7	37	20

43	16	38	4	7	37	20	2	3	6	1	30

HEAP represents a complete binary tree stored as an array such that:

- HEAP PROPERTY: Parent value is \geq child's value

Complete Binary Tree:

- Tree is filled on all levels except the last level
- Last level is filled from left to right
- Left \& right child of i are in locations $2 i$ and $2 i+1$

HeapSort

- First convert array into a heap (BUILD-MAXHEAP, p157)
Then convert heap into sorted array (HEAPSORT, p160)

8
 Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html
http://cg.scs.carleton.ca/~morin/misc/sortalg/

HeapSort: Part 1

Max-Heapify (array A, int i)
\triangleright Assume subtree rooted at i is not a heap;
\triangleright but subtrees rooted at children of i are heaps
$1 \quad l \leftarrow \operatorname{LEFT}[i]$
$2 r \leftarrow \operatorname{RIGHT}[i]$
3 if $((l \leq$ heap-size $[A])$ and $(A[l>A[i]))$
then largest \leftarrow !
else largest $\leftarrow i$
if $((r \leq$ heap-size $[A])$ and $(A[r]>A[$ largest $]))$ then largest $\leftarrow r$
if (larges $l \neq i$)
then exchange $A[i] \leftrightarrow A$ [largest $]$

Analysis of Max-Heapify

- $\mathrm{T}(\mathrm{N}) \leq \mathrm{T}(2 \mathrm{~N} / 3)+\mathrm{O}(1)$

```
MAX-HEAPIFY(array A, int i)
    \triangleright ~ A s s u m e ~ s u b t r e e ~ r o o t e d ~ a t ~ i ~ i s ~ n o t ~ a ~ h e a p ;
    but subtrees rooted at children of i are heaps
    l\longleftarrowLEFT[i]
    r\longleftarrow RIGHT[i]
    if ((l\leqheap-size[A]) and (A[l>> A[i]))
        then largest \leftarrowl
        else largest \leftarrowi
    if ((r\leqheap-size[A]) and (A[r]>A[largest]))
        then largest \leftarrowr
    if (largesi f i)
        then exchange }A[i]\longleftrightarrowA[\mathrm{ largest }
10 MAX-HEAPIFY(A,largest)
```

- When called on node i, either it terminates with O(1) steps or makes a recursive call on node at lower level
- At most 1 call per level
- Time Complexity = O(level of node i) = $O\left(h_{i}\right)=O(\log N)$

HeapSort: Part 2

> Build-Max-HEAP $(\operatorname{array} A)$
> 1
> heap-size $[A] \leftarrow$ length $[A]$ 2 for $i \leftarrow\lfloor$ length $[A] / 2\rfloor$ downto 1.

HeapSort: Part 2

```
Bulld-MAX-HEAP(array A)
1 heap-size [A]}\leftarrow\mathrm{ length [A]
2 for }i\leftarrow\lfloorlength[A]/2\rfloor\mathrm{ downto 1
3 do Max-Heapify (}A,i
```

HeapSort (array A)
1 Build-Max- $\operatorname{Hear}(\Lambda)$
2 for $i \leftarrow$ length $[A]$ downto 2

Total:
O(nlog n)

13
 HeapSort: Part 2

$$
\begin{aligned}
& \text { Build-Max-HEAP (array A) } \\
& 1 \text { heap-size }[A] \leftarrow \text { length }[A] \\
& 2 \text { for } i \leftarrow\lfloor\text { length }[A] / 2\rfloor \text { downto } 1 \\
& 3 \text { do Max-Heapify }(A, i)
\end{aligned}
$$

For $\mathrm{n} / 2$ nodes, height is 1 and \# of comparisons $=0$,
For $\mathrm{n} / 4$ nodes, height is 2 and \# of comparisons $=1$,

- For $\mathrm{n} / 8$ nodes, height is 3 and \# of comparisons $=2, \ldots$
- Total = summation ((height -1) X \# of nodes at that height)
- Total = summation ((height - 1) X N/2height)
- Total \leq summation (height $X \mathrm{~N} / \mathbf{2}^{\text {height }}$)
- Total \leq N X summation (height X $1 / 2^{\text {height }}$)

Build-Max-Heap Analysis

We need to compute:

$$
n \times \sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}}
$$

Build-Max-Heap: O(n)

We know that $\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}$
Differentiating both sides, we get $\sum_{k=0}^{\infty} k x^{k-1}=\frac{1}{(1-x)^{2}}$
Multiplying both sides by x, we get $\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}$
Setting $x=1 / 2$, we can show that $\sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}} \leq 2$

${ }^{15}$ HeapSort

```
BUILD-MAX-HEAP(array A)
```

1 heap-size[A]}\longleftarrow length[A

```
1 heap-size[A]}\longleftarrow length[A
2 for i « \lfloorlength[A]/2\rfloor downto 1
2 for i « \lfloorlength[A]/2\rfloor downto 1
```

3 do MAX-IMEAPIFY(A,i)

```
```

```
```

3 do MAX-IMEAPIFY(A,i)

```
```

```
```

3 do MAX-IMEAPIFY(A,i)

```
```

```
```

HeapSORT(array A)
Build-MAx-HEAP(^)

```
2 for i « length[A] clownto 2
```

2 for i « length[A] clownto 2
3 do exchange }A[1]\leftrightarrowA[i
3 do exchange }A[1]\leftrightarrowA[i
heap-size[A] \longleftarrow heap-size[A] - 1
heap-size[A] \longleftarrow heap-size[A] - 1
5 MAX-HEAPIFY(A, 1)

```
```

5 MAX-HEAPIFY(A, 1)

```
```

- Single call to MaxHeapify runs in $\mathrm{O}(\mathrm{h})$ time
- However, Build-MaxHeap runs in $\mathrm{O}(\mathrm{n})$ time
- HeapSort runs in O(n log n) time

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort

QuickSort

- MergeSort
- HeanSort

- Bucket \& Radix Sort
- Counting Sort

Worst Case: O(N); Not comparisonbased

Upper and Lower Bounds

- Time Complexity of a Problem
- Difficulty: Since there can be many algorithms that solve a problem, what time complexity should we pick?
- Solution: Define upper bounds and lower bounds within which the time complexity lies.
- What is the upper bound on time complexity of sorting?
- Answer: Since SelectionSort runs in worst-case $\mathrm{O}\left(\mathrm{N}^{2}\right)$ and MergeSort runs in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$, either one works as an upper bound.
- Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e., time complexity of the best algorithm.
- What is the lower bound on time complexity of sorting?
- Difficulty: If we claim that lower bound is $\mathrm{O}(\mathrm{f}(\mathrm{N})$), then we have to prove that no algorithm that sorts N items can run in worst-case time o(f(N)).

Lower Bounds

- It's possible to prove lower bounds for many comparison-based problems.
- For comparison-based problems, for inputs of length N, if there are $P(N)$ possible solutions, then
- any algorithm needs $\log _{2}(P(N))$ to \}olve the problem.

Binary Search on a list of \mathbf{N} items has at least $\mathbf{N + 1}$ possible solutions. Hence lower bound is

- $\log _{2}(\mathrm{~N}+1)$.
- Sorting a list of \mathbf{N} items has at least N ! possible solutions. Hence lower bound is
- $\log _{2}(N!)=O(N \log N)$
- Thus, MergeSort is an optimal algorithm.
- Because its worst-case time complexity equals lower bound!

Beating the Lower Bound

- Bucket Sort
- Runs in time $O(N+K)$ given N integers in range [$a+1, a+K]$
- If $K=O(N)$, we are able to sort in $O(N)$
- How is it possible to beat the lower bound?
- Only because we know more about the data.
- If nothing is know about the data, the lower bound holds.
- Radix Sort
- Runs in time $\mathrm{O}(\mathrm{d}(\mathrm{N}+\mathrm{K}))$ given N items with d digits each in range [1,K]
- Counting Sort
- Runs in time $\mathbf{O}(\mathbf{N}+\mathrm{K})$ given \mathbf{N} items in range [a+1, $a+K]$

Bucket Sort

- $\quad \mathbf{N}$ integer values in the range [a..a+m-1]
- For e.g., sort a list of 50 scores in the range [0..9].
- Algorithm
- Make m buckets [a..a+m-1]
- As you read elements throw into appropriate bucket
- Output contents of buckets [0..m] in that order
- Time O(N+m)
- Warning: This algorithm cannot be used for "infiniteprecision" real numbers, even if the range of values is specified.

${ }^{21}$ Stable Sort

- A sort is stable if equal elements appear in the same order in both the input and the output.
Which sorts are stable?

Radix Sort

\(\left.$$
\begin{array}{lll}3 & 5 & 9 \\
3 & 5 & 7 \\
3 & 5 & 1 \\
7 & 3 & 9 \\
3 & 3 & 6 \\
7 & 2 & 0\end{array}
$$ \quad \begin{array}{lll}3 \& 5 \& 9

3 \& 5 \& 7

3 \& 5 \& 5\end{array}\right]\)| 3 | 3 | 6 |
| :--- | :--- | :--- |
| 3 | 5 | 5 |
| 7 | 3 | 9 |
| 7 | 2 | 0 |

3	3	6	3		6
3	5	9	3	5	1
3	5	7	3	5	5
3	5	1	3	5	7
3	5	5	3	5	9
7	2	0	7	2	0
7	3	9	8	3	9

Algorithm

for $\mathrm{i}=1$ to d do

sort array A on digit i using any sorting algorithm
Time Complexity: $\mathrm{O}\left((\mathrm{N}+\mathrm{m})+\left(\mathrm{N}+\mathrm{m}^{2}\right)+\ldots+\left(\mathrm{N}+\mathrm{m}^{\mathrm{d}}\right)\right)$

${ }^{23}$ Radix Sort

3	2	9	7	2	0	7	2	0	3		
4	5	7	3	5	5	3	2	9	3	5	
6	5	7	4	3	6	4	3	6	4		
8	3	9	4	5	7	8	3	9	4	5	
4	3	6	6	5	7	3	5	5	6	5	
7	2	0	3	2	9	4	5	7	7	2	0
3	5	5	8	3	9	6	5	7	8	3	

Algorithm
Time Complexity: $\mathrm{O}((\mathrm{n}+\mathrm{m}) \mathrm{d})$
for $i=1$ to do
sort array A on digit i using a stable sort algorithm

- Warning: This algorithm cannot be used for "infinite-precision" real numbers, even if the range of values is specified.

Counting Sort

Initial Array	1	2	3		4	5		6		8
	2	5	3		0	2		3		3
Counts	0			2	3		4			
	2		0	2			0			
Cumulative Counts	0		1	2		3	4			
	2		2	4		7	7			

- Warning: This algorithm cannot be used for "infinite-precision" real numbers, even if the range of values is specified.

