
CAP 5510 / CGS 5166

COT 5407: Introduction
to Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407S19.html
1/22/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407 1/24/17

!2 Homework
! Read Guidelines and Follow Instructions!
! Statement of Collaboration

! Take it seriously.
! If true, reproduce the statement faithfully.
! For each problem, explain separately the sources and your

collaborations with other people.
! Your homework will not be graded without the statement.

! Extra Credit Problem
! You can turn it in any time within a month or until last class day,

whichever is earlier.
! If you are not sure of your solution, don’t waste my time.
! You will NOT get partial credit on an extra credit problem.
! Submit it separately and label it appropriately.

COT 5407

Definition of big-Oh

! We say that F(n) = O(G(n)),
! If there exists two positive constants, c

and n0, such that
! For all n ≥ n0, we have F(n) ≤ c G(n)

! We say that F(n) = Ω(G(n)),
! If there exists two positive constants, c

and n0, such that
! For all n ≥ n0, we have F(n) ≥ c G(n)

! We say that F(n) = Θ(G(n)),
! If F(n) = O(G(n)) and F(n) = Ω(G(n))

! We say that F(n) = ω(G(n)),
! If F(n) = Ω(G(n)), but F(n) ≠ Θ(G(n))

! We say that F(n) = o(G(n)),
! If F(n) = O(G(n)), but F(n) ≠ Θ(G(n))

8/28/07

!3

COT 5407 9/4/08

!4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COT 5407 1/24/17

!5 Storing binary trees as arrays

20 7 38 4 16 37 43

COT 5407 1/24/17

!6 Heaps (Max-Heap)
43 16 38 4 7 37 20

43 16 38 4 7 37 20 2 3 6 1 30

HEAP represents a complete binary tree stored as an array such that:
• HEAP PROPERTY: Parent value is ≥ child’s value
Complete Binary Tree:
• Tree is filled on all levels except the last level
• Last level is filled from left to right
• Left & right child of i are in locations 2i and 2i+1

COT 5407 1/24/17

!7 HeapSort

! First convert array into a heap (BUILD-MAX-
HEAP, p157)

! Then convert heap into sorted array
(HEAPSORT, p160)

COT 5407 1/24/17

!8 Animation Demos
http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

COT 5407 1/24/17

!9 HeapSort: Part 1

p154, CLRS

COT 5407

Analysis of Max-Heapify
! T(N) ≤ T(2N/3) + O(1)
! When called on node i,

either it terminates with
O(1) steps or makes a
recursive call on node
at lower level

! At most 1 call per level
! Time Complexity =

O(level of node i) =
O(hi) = O(log N) 1/24/17

!10

COT 5407 1/24/17

!11 HeapSort: Part 2

O(log n)
Total:
O(nlog n)

COT 5407 1/24/17

!12 HeapSort: Part 2

O(log n)
Total:
O(nlog n)

COT 5407

HeapSort: Part 2

! For n/2 nodes, height is 1 and # of comparisons = 0,
! For n/4 nodes, height is 2 and # of comparisons = 1,
! For n/8 nodes, height is 3 and # of comparisons = 2, …
! Total = summation ((height -1) X # of nodes at that height)
! Total = summation ((height – 1) X N/2height)
! Total ≤ summation (height X N/2height)
! Total ≤ N X summation (height X 1/2height)

1/24/17

!13

COT 5407

Build-Max-Heap Analysis

1/24/17

!14

We need to compute: Build-Max-Heap: O(n)

COT 5407

HeapSort

! Single call to Max-
Heapify runs in O(h) time

! However, Build-Max-
Heap runs in O(n) time

! HeapSort runs in O(n log
n) time

1/24/17

!15

COT 5407 1/24/17

!16 Sorting Algorithms

! SelectionSort
! InsertionSort
! BubbleSort
! QuickSort
! MergeSort
! HeapSort
! Bucket & Radix Sort
! Counting Sort

W
or

st
 C

as
e:

O

(N
2)

Worst Case:
O(N logN) A

vg
 C

as
e:

O

(N
 lo

g
N

)

Worst Case: O(N);
Not comparison-

based

Lower Bound for
Comparison-based

Sorting

COT 5407

Upper and Lower Bounds
! Time Complexity of a Problem

! Difficulty: Since there can be many algorithms that solve a problem, what time
complexity should we pick?

! Solution: Define upper bounds and lower bounds within which the time complexity lies.
! What is the upper bound on time complexity of sorting?

! Answer: Since SelectionSort runs in worst-case O(N2) and MergeSort runs in O(N log N),
either one works as an upper bound.

! Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e.,
time complexity of the best algorithm.

! What is the lower bound on time complexity of sorting?
! Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no

algorithm that sorts N items can run in worst-case time o(f(N)).

1/19/17

!17

COT 5407

Lower Bounds
! It’s possible to prove lower bounds for many comparison-based

problems.
! For comparison-based problems, for inputs of length N, if there are P(N)

possible solutions, then
! any algorithm needs log2(P(N)) to solve the problem.

! Binary Search on a list of N items has at least N + 1 possible solutions.
Hence lower bound is
! log2(N+1).

! Sorting a list of N items has at least N! possible solutions. Hence lower
bound is
! log2(N!) = O(N log N)

! Thus, MergeSort is an optimal algorithm.
! Because its worst-case time complexity equals lower bound!

1/19/17

!18

COT 5407

Beating the Lower Bound

! Bucket Sort
! Runs in time O(N+K) given N integers in range [a+1, a+K]
! If K = O(N), we are able to sort in O(N)
! How is it possible to beat the lower bound?
! Only because we know more about the data.
! If nothing is know about the data, the lower bound holds.

! Radix Sort
! Runs in time O(d(N+K)) given N items with d digits each in range [1,K]

! Counting Sort
! Runs in time O(N+K) given N items in range [a+1, a+K]

1/24/17

!19

COT 5407 1/24/17

!20 Bucket Sort
! N integer values in the range [a..a+m-1]
! For e.g., sort a list of 50 scores in the range [0..9].
! Algorithm

! Make m buckets [a..a+m-1]
! As you read elements throw into appropriate bucket
! Output contents of buckets [0..m] in that order

! Time O(N+m)
! Warning: This algorithm cannot be used for “infinite-

precision” real numbers, even if the range of values is
specified.

COT 5407 1/24/17

!21 Stable Sort

! A sort is stable if equal elements appear in
the same order in both the input and the
output.

! Which sorts are stable?

COT 5407 1/24/17

!22 Radix Sort
3 5 9

3 5 7

3 5 1

7 3 9

3 3 6

7 2 0

3 5 5

3 5 9

3 5 7

3 5 1

3 3 6

3 5 5

7 3 9

7 2 0

Algorithm

for i = 1 to d do
sort array A on digit i using any sorting algorithm

Time Complexity: O((N+m) + (N+m2) + …+ (N+md))

3 3 6

3 5 9

3 5 7

3 5 1

3 5 5

7 2 0

7 3 9

3 3 6

3 5 1

3 5 5

3 5 7

3 5 9

7 2 0

8 3 9

Space Complexity: O(md)

COT 5407 1/24/17

!23 Radix Sort
3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Algorithm
for i = 1 to d do

sort array A on digit i using a stable sort algorithm

Time Complexity: O((n+m)d)

•Warning: This algorithm cannot be used for “infinite-precision”
real numbers, even if the range of values is specified.

COT 5407 1/24/17

!24 Counting Sort
1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3

0 1 2 3 4 5

2 0 2 3 0 1

0 1 2 3 4 5

2 2 4 7 7 8

Initial Array

Counts

Cumulative
Counts

•Warning: This algorithm cannot be used for “infinite-precision”
real numbers, even if the range of values is specified.

