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!2 Homework
! Read Guidelines and Follow Instructions! 
! Statement of Collaboration 

! Take it seriously. 
! If true, reproduce the statement faithfully. 
! For each problem, explain separately the sources and your 

collaborations with other people. 
! Your homework will not be graded without the statement. 

! Extra Credit Problem 
! You can turn it in any time within a month or until last class day, 

whichever is earlier. 
! If you are not sure of your solution, don’t waste my time.  
! You will NOT get partial credit on an extra credit problem. 
! Submit it separately and label it appropriately.
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Definition of big-Oh

! We say that F(n) = O(G(n)),  
! If there exists two positive constants, c 

and n0, such that  
! For all n ≥ n0, we have F(n) ≤ c G(n) 

! We say that F(n) = Ω(G(n)),  
! If there exists two positive constants, c 

and n0, such that  
! For all n ≥ n0, we have F(n) ≥ c G(n) 

 

! We say that F(n) = Θ(G(n)), 
! If F(n) = O(G(n)) and F(n) = Ω(G(n)) 

! We say that F(n) = ω(G(n)),  
! If F(n) = Ω(G(n)), but F(n) ≠ Θ(G(n)) 

!  We say that F(n) = o(G(n)),  
! If F(n) = O(G(n)), but F(n) ≠ Θ(G(n))

8/28/07
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!5 Storing binary trees as arrays

20 7 38 4 16 37 43
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!6 Heaps (Max-Heap)
43 16 38 4 7 37 20

43 16 38 4 7 37 20 2 3 6 1 30

HEAP represents a complete binary tree stored as an array such that: 
• HEAP PROPERTY: Parent value is ≥ child’s value 
Complete Binary Tree: 
• Tree is filled on all levels except the last level 
•  Last level is filled from left to right 
•  Left & right child of i are in locations 2i and 2i+1
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!7 HeapSort

! First convert array into a heap (BUILD-MAX-
HEAP, p157) 

! Then convert heap into sorted array 
(HEAPSORT, p160)
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!8 Animation Demos
http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/
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!9 HeapSort: Part 1

p154, CLRS
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Analysis of Max-Heapify
! T(N) ≤ T(2N/3) + O(1) 
! When called on node i, 

either it terminates with 
O(1) steps or makes a 
recursive call on node 
at lower level 

! At most 1 call per level 
! Time Complexity = 

O(level of node i) = 
O(hi) = O(log N) 1/24/17
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!11 HeapSort: Part 2

O(log n)
Total:
O(nlog n)
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!12 HeapSort: Part 2

O(log n)
Total:
O(nlog n)
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HeapSort: Part 2

! For n/2 nodes, height is 1 and # of comparisons = 0, 
! For n/4 nodes, height is 2 and # of comparisons = 1, 
! For n/8 nodes, height is 3 and # of comparisons = 2, …  
! Total = summation ((height -1) X # of nodes at that height) 
! Total = summation ((height – 1) X N/2height) 
! Total ≤ summation (height X N/2height) 
! Total ≤ N X summation (height X 1/2height)

1/24/17
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Build-Max-Heap Analysis

1/24/17
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We need to compute: Build-Max-Heap: O(n)
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HeapSort

! Single call to Max-
Heapify runs in O(h) time 

! However, Build-Max-
Heap runs in O(n) time 

! HeapSort runs in O(n log 
n) time

1/24/17
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!16 Sorting Algorithms

! SelectionSort 
! InsertionSort 
! BubbleSort 
! QuickSort 
! MergeSort 
! HeapSort 
! Bucket & Radix Sort 
! Counting Sort
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Upper and Lower Bounds
! Time Complexity of a Problem 

! Difficulty: Since there can be many algorithms that solve a problem, what time 
complexity should we pick? 

! Solution: Define upper bounds and lower bounds within which the time complexity lies. 
! What is the upper bound on time complexity of sorting? 

! Answer: Since SelectionSort runs in worst-case O(N2) and MergeSort runs in O(N log N), 
either one works as an upper bound.  

! Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e., 
time complexity of the best algorithm. 

! What is the lower bound on time complexity of sorting? 
! Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no 

algorithm that sorts N items can run in worst-case time o(f(N)). 

1/19/17
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Lower Bounds
! It’s possible to prove lower bounds for many comparison-based 

problems.  
! For comparison-based problems, for inputs of length N, if there are P(N) 

possible solutions, then  
! any algorithm needs log2(P(N)) to solve the problem.  

! Binary Search on a list of N items has at least N + 1 possible solutions. 
Hence lower bound is  
! log2(N+1).  

! Sorting a list of N items has at least N! possible solutions. Hence lower 
bound is 
! log2(N!) = O(N log N) 

! Thus, MergeSort is an optimal algorithm.  
! Because its worst-case time complexity equals lower bound!

1/19/17

!18



COT 5407

Beating the Lower Bound

! Bucket Sort 
! Runs in time O(N+K) given N integers in range [a+1, a+K] 
! If K = O(N), we are able to sort in O(N) 
! How is it possible to beat the lower bound?  
! Only because we know more about the data.  
! If nothing is know about the data, the lower bound holds. 

! Radix Sort 
! Runs in time O(d(N+K)) given N items with d digits each in range [1,K] 

! Counting Sort 
! Runs in time O(N+K) given N items in range [a+1, a+K]

1/24/17
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!20 Bucket Sort
! N integer values in the range [a..a+m-1] 
! For e.g., sort a list of 50 scores in the range [0..9]. 
! Algorithm 

! Make m buckets [a..a+m-1] 
! As you read elements throw into appropriate bucket 
! Output contents of buckets [0..m] in that order 

! Time O(N+m) 
! Warning: This algorithm cannot be used for “infinite-

precision” real numbers, even if the range of values is 
specified. 
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!21 Stable Sort

! A sort is stable if equal elements appear in 
the same order in both the input and the 
output. 

! Which sorts are stable? 
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!22 Radix Sort
3 5 9

3 5 7

3 5 1

7 3 9

3 3 6

7 2 0

3 5 5

3 5 9

3 5 7

3 5 1

3 3 6

3 5 5

7 3 9

7 2 0

Algorithm

for i = 1 to d do
sort array A on digit i using any sorting algorithm 

Time Complexity: O((N+m) + (N+m2) + …+ (N+md))

3 3 6

3 5 9

3 5 7

3 5 1

3 5 5

7 2 0

7 3 9

3 3 6

3 5 1

3 5 5

3 5 7

3 5 9

7 2 0

8 3 9

Space Complexity: O(md)
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!23 Radix Sort
3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Algorithm
for i = 1 to d do

sort array A on digit i using a stable sort algorithm 

Time Complexity: O((n+m)d)

•Warning: This algorithm cannot be used for “infinite-precision” 
real numbers, even if the range of values is specified.  
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!24 Counting Sort
1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3

0 1 2 3 4 5

2 0 2 3 0 1

0 1 2 3 4 5

2 2 4 7 7 8

Initial Array

Counts

Cumulative 
Counts

•Warning: This algorithm cannot be used for “infinite-precision” 
real numbers, even if the range of values is specified. 


