COT 5407: Introduction

to Algorithms

Giri NARASIMHAN
www.cs fiu.edu/~giri/teach/5407S19.htmi

http://www.cs.fiu.edu/~giri/teach/5407S19.html

Beating the Lower Bound

= Bucket Sort
» Runs in fime O(N+K) given N integers in range [a+1, a+K]
If K= O(N), we are able to sort in O(N)
How is it possible to beat the lower bound?
Only because we know more about the data.
= |f nothing is know about the data, the lower bound holds.
= Radix Sort
= Runs in time O(d(N+K)) given N items with d digits each in range [1,K]
=» Counting Sort
= Runs in time O(N+K) given N items in range [a+1, a+K]

COT 5407 1/24/17

Bucket Sort

= N integer values in the range [a..a+m-1]
= For e.g., sort a list of 50 scores in the range [0..9].

» Algorithm

» Make m buckets [a..a+m-1]

» As you read elements throw into appropriate bucket
» Output contents of buckets [0..m] in that order

» Time O(N+m)
» Warning: This algorithm cannot be used for “infinite-

precision” real numbers, even if the range of values is
specified.

COT 5407 1/24/17

Stable Sort

» A sort is stable if equal elements appear in
the same order in both the input and the
output.

=» Which sorts are stable?

OOOOOOO

Radix Sort

3509 3509 33 6 336
357 357 35 9 3 51
351 351 35 7 355
7 39 ‘336 ‘ 35 1 ‘ 3 57
3 36 355 35 5 3509
720 7 39 7 120 720
355 720 7I9 8 3 9
Algorithm

fori=1toddo
sort array A on digit i using any sorting algorithm

Time Complexity: O((N+m) + (N+m2) + ...+ (N+md))

Space Complexity: O(md)

COT 5407 1/24/17

Radix Sort

329 720 7 20 329
4 5 7 355 329 355
6 5 7 4 3 6 4 3 6 4 3 6
8 3 9 ‘ 4 5 7 ‘ 8 3 9 ‘ 4 5 7
4 3 6 6 5 7 355 6 5 7
7 20 3209 4 5 7 7 20
355 8 3 9 6 5 7 8 3 9
Algorithm Time Complexity: O((n+m)d)

fori=1toddo
sort array A on digit i using a stable sort algorithm

*Warning: This algorithm cannot be used for “infinite-precision”
s, | Peal numbers, even if the range of values is specified. .y

Counting Sort

COT 5407

Initial Array

Counts O 1 2 3 4 5

Cumulative ol1 1213 1415
Counts

2 12 |4 |7 |7 |8

-Warning: This algorithm cannot be used for “infinite-precision”

real numbers, even if the range of values is specified.

1/24/17

Tree Sorting

» BSTis a search structure that helps efficient search
= Search can be done in O(h) time, where h = height of BST
» Also inserts and deletes can be done in O(h) time
= Unfortunately, Height h = O(N)
= Balanced BST improves BST with h = O(log N)
» Thus search can be done in O(log N)
= And, inserts and deletes too can be done in O(log N) time
=» We can use BBSTs in the following way:
» Repeatedly insert N items into a BBST
» Repeatedly delete the smallest item from the BBST until it is empty

= N inserts and N deletes can be done in O(N log N) time

COT 5407 1/26/17

Order Statistics

» Maximum, Minimum
» Upper Bound

= O(n) because ??

= We have an algorithm with a single for-loop: n-1 comparisons

Lower Bound RO N kA (X) —

=n-1 comparisons

= MinMax position of x In

» Upper Bound: 2(n-1) comparisons

=» Lower Bound: 3n/2 comparisons S O rTe d O rd e r O

= Max and 2ndMax

®» Upper Bound: (n-1) + (n-2) comparisons

= Lower Bound: Harder to prove

COT 5407 9/30/08

k-Selection: Median

» Select the k-th smallest item in list

Naive Solution
» Sort;
» pick the k-th smallest item in sorted list.
O(n log n) time complexity

» |dea: Modify Partition from QuickSort

» How?
=» Randomized solution: Average case O(n)
» |mproved Solution: worst case O(n)

COT 5407

9/30/08

Using Partition for k-Selection

|

PARTITION(array A.ind p,int r
Y A, P

» Perform Partition from
QuickSort (assume all

l z+— A7 > Choose pivot unique items)

2 1—p-—1 - o

3 for j—ptor—1 y _Fhar;k(plvof) T|1 -Ii-h# of items
1 do it (A5 < 2 at are smaller than pivot
5 then i — i+ 1 = |f Rank(pivot) = k, we are

5 exchange Ali] & Alj] done

—_—

"~

exchange A [i -+ 1] — A['”]

> I -
i iy Else, recursively perform k

Selection in one of the two
partitions

COT 5407 1/26/17

QuickSelect: a variant of QuickSort

QUICKSELECT (array A, int k,int p,int r)

> Select k-th largest in subarray Alp..r]
L|if (p=r1r)
2 then return A[p)
3 q < PARTITION(A, p, 1)
4 2—qg—p+1 > Compute rank of pivot
o |if (i = k)
6 then return Alg]
7 oif (1 > k)
& then return QUICKSELECT(A, k. p, q)
9 else |return QUICKSELECT(A,k —1,q+ 1,7)

k-Selection Time Complexity

» Perform Partition from QuickSort (assume all unique items)

» Rank(pivot) =1 + # of items that are smaller than pivot
= |f Rank(pivot) = k, we are done
-/ Else, recursively perform k-Selection in one of the two partitions

* Onthe average: PARTITION(array A, inl p.inl r)

" Rank(pivot) =n/2 1 x« Alr] > Choose pivot
* Average-case fime 2 te—p-—1

= T(N) =T(N/2) + O(N) 3 forj«ptor—1

= T(N) = O(N) 1
5 then 71 «— 7 + 1
’
7

. Wors’r—ci(]se fime exchangze l:] ¢ 1[1]
= T(N) =T(N-1) + O(N) exchange Afi + 1] & Alr]
= T(N) = O(N2) 8 returni+ 1

Randomized Solution for k-Selection

» UUses RandomizedPartition instead of Partition

» RandomizedPariition picks the pivot uniformly at
random from among the elements in the list o be
partitioned.

» Randomized k-Selection runs in O(N) time on
the average

» Worst-case behavior is very poor O(N2)

