COT 5407: Introduction to Algorithms Giri NARASIMHAN

 www.cs.fiu.edu/~giri/teach/5407S19.html
2
 Beating the Lower Bound

- Bucket Sort
- Runs in time $\mathrm{O}(\mathrm{N}+\mathrm{K})$ given N integers in range $[\mathrm{a}+1, \mathrm{a}+\mathrm{K}]$
- If $\mathrm{K}=\mathrm{O}(\mathrm{N})$, we are able to sort in $\mathrm{O}(\mathrm{N})$
- How is it possible to beat the lower bound?
- Only because we know more about the data.
- If nothing is know about the data, the lower bound holds.
- Radix Sort
- Runs in time $\mathrm{O}(\mathrm{d}(\mathrm{N}+\mathrm{K}))$ given N items with d digits each in range $[1, \mathrm{~K}]$
- Counting Sort
- Runs in time $\mathrm{O}(\mathrm{N}+\mathrm{K})$ given N items in range $[\mathrm{a}+1, \mathrm{a}+\mathrm{K}]$

Bucket Sort

- $\quad \mathbf{N}$ integer values in the range [a..a+m-1]
- For e.g., sort a list of 50 scores in the range [0..9].
- Algorithm
- Make m buckets [a..a+m-1]
- As you read elements throw into appropriate bucket
- Output contents of buckets [0..m] in that order
- Time O(N+m)
- Warning: This algorithm cannot be used for "infiniteprecision" real numbers, even if the range of values is specified.

Stable Sort

- A sort is stable if equal elements appear in the same order in both the input and the output.
Which sorts are stable?

5 Radix Sort

$\left.\begin{array}{lll}3 & 5 & 9 \\ 3 & 5 & 7 \\ 3 & 5 & 1 \\ 7 & 3 & 9 \\ 3 & 3 & 6 \\ 7 & 2 & 0\end{array} \quad \begin{array}{lll}3 & 5 & 9 \\ 3 & 5 & 5\end{array} \quad \begin{array}{l}7 \\ 3\end{array}\right)$

3	3	6	3		6
3	5	9	3	5	1
3	5	7	3	5	5
3	5	1	3	5	7
3	5	5	3	5	9
7	2	0	7	2	0
7	3	9	8	3	9

Algorithm

for $\mathrm{i}=1$ to d do
sort array A on digit i using any sorting algorithm
Time Complexity: $\mathrm{O}\left((\mathrm{N}+\mathrm{m})+\left(\mathrm{N}+\mathrm{m}^{2}\right)+\ldots+\left(\mathrm{N}+\mathrm{m}^{\mathrm{d}}\right)\right)$

. Radix Sort

3	2	9	7	2	0	7	2	0	3		
4	5	7	3	5	5	3	2	9	3	5	
6	5	7	4	3	6	4	3	6	4		
8	3	9	4	5	7	8	3	9	4	5	
4	3	6	6	5	7	3	5	5	6	5	
7	2	0	3	2	9	4	5	7	7	2	0
3	5	5	8	3	9	6	5	7	8	3	

Algorithm
Time Complexity: $\mathrm{O}((\mathrm{n}+\mathrm{m}) \mathrm{d})$
for $i=1$ to do
sort array A on digit i using a stable sort algorithm

- Warning: This algorithm cannot be used for "infinite-precision" real numbers, even if the range of values is specified.

Counting Sort

Initial Array

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3
Counts							
	0 1 2 3 4						
	2	4	7	7	8		

-Warning: This algorithm cannot be used for "infinite-precision" real numbers, even if the range of values is specified.

Bree Sorting

- BST is a search structure that helps efficient search
- Search can be done in $O(h)$ time, where $h=$ height of BST
- Also inserts and deletes can be done in O(h) time
- Unfortunately, Height h = O(N)
- Balanced BST improves BST with $\mathrm{h}=\mathrm{O}(\log \mathrm{N})$
- Thus search can be done in $\mathrm{O}(\log \mathrm{N})$
- And, inserts and deletes too can be done in $O(\log N)$ time
- We can use BBSTs in the following way:
- Repeatedly insert N items into a BBST
- Repeatedly delete the smallest item from the BBST until it is empty
- \mathbf{N} inserts and \mathbf{N} deletes can be done in $\mathbf{O}(\mathbf{N} \log \mathrm{N})$ time

Order Statistics

- Maximum, Minimum
- Upper Bound

7	3	1	9	4	8	2	5

- O(n) because ??
- We have an algorithm with a single for-loop: n - 1 comparisons
- Lower Bound
- n - 1 comparisons

- MinMax

- Upper Bound: 2(n-1) comparisons
- Lower Bound: 3n/2 comparisons
- Max and 2ndMax
- Upper Bound: (n-1) + (n-2) comparisons
- Lower Bound: Harder to prove

k-Selection; Median

- Select the k-th smallest item in list
- Naïve Solution
- Sort;
- pick the k -th smallest item in sorted list. $O(n \log n)$ time complexity
Idea: Modify Partition from QuickSort
- How?
- Randomized solution: Average case O(n)
- Improved Solution: worst case O(n)

Using Partition for k-Selection

```
Partition(artay A, inl p, int r)
    x\leftarrowAr] }\triangleright\mathrm{ Choose pivot
    i\leftarrowp-1
    for }j\leftarrowp\mathrm{ to }r-
        do if (A[j\leq \leq )
            then }i\leftarrowi+
                        exchange }A[i]\leftrightarrowA[j
    exchange }A[i+1]\leftrightarrowA[r
    return i+1
```

- Perform Partition from QuickSort (assume all unique items)
- Rank(pivot) = 1 + \# of items that are smaller than pivot
- If Rank(pivot) = k, we are done
- Else, recursively perform kSelection in one of the two partitions

QuickSelect: a variant of QuickSort

```
QuickSelect(array A, int k, int p, int r)
Select k-th largest in subarray }A[p..r
if (p=r)
        then return }A[p
q}\leftarrow\operatorname{Partition(A,p,r)
4 i}\leftarrowq-p+1\quadD Compute rank of pivot
5 \mp@code { i f ~ ( i = k ) }
6
if (i>k)
8 then return QuickSelect ( }A,k,p,q
9 else return QuickSelect( }A,k-i,q+1,r
```


k-Selection Time Complexity

- Perform Partition from QuickSort (assume all unique items)
- Rank(pivot) $=1+$ \# of items that are smaller than pivot
- If Rank(pivot) $=k$, we are done
- Else, recursively perform k-Selection in one of the two partitions
- On the average:
- Rank(pivot) $=n / 2$
- Average-case time
- $\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N} / 2)+\mathrm{O}(\mathrm{N})$
- $T(N)=O(N)$
- Worst-case time
- $\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{O}(\mathrm{N})$
- $\mathrm{T}(\mathrm{N})=\mathrm{O}\left(\mathrm{N}^{2}\right)$

```
Partition(artay A, int p, int r)
    x\leftarrowA[r] \triangleright Choose pivot
    i\leftarrowp-1
    for }j\leftarrowp\mathrm{ to }r-
        do if (A[j]\leqx)
                then }i\leftarrowi+
                        cxchangc Ai]}\leftrightarrowA[j
    exchange }A[i+1]\leftrightarrowA[r
    return i+1
```


Randomized Solution for k-Selection

- Uses RandomizedPartition instead of Partition
- RandomizedPartition picks the pivot uniformly at random from among the elements in the list to be partitioned.
Randomized k-Selection runs in $\mathrm{O}(\mathrm{N})$ time on the average
- Worst-case behavior is very poor O(N2)

