
CAP 5510 / CGS 5166

COT 5407: Introduction
to Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407S19.html
1/28/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407

Beating the Lower Bound

! Bucket Sort
! Runs in time O(N+K) given N integers in range [a+1, a+K]
! If K = O(N), we are able to sort in O(N)
! How is it possible to beat the lower bound?
! Only because we know more about the data.
! If nothing is know about the data, the lower bound holds.

! Radix Sort
! Runs in time O(d(N+K)) given N items with d digits each in range [1,K]

! Counting Sort
! Runs in time O(N+K) given N items in range [a+1, a+K]

1/24/17

!2

COT 5407 1/24/17

!3 Bucket Sort
! N integer values in the range [a..a+m-1]
! For e.g., sort a list of 50 scores in the range [0..9].
! Algorithm

! Make m buckets [a..a+m-1]
! As you read elements throw into appropriate bucket
! Output contents of buckets [0..m] in that order

! Time O(N+m)
! Warning: This algorithm cannot be used for “infinite-

precision” real numbers, even if the range of values is
specified.

COT 5407 1/24/17

!4 Stable Sort

! A sort is stable if equal elements appear in
the same order in both the input and the
output.

! Which sorts are stable?

COT 5407 1/24/17

!5 Radix Sort
3 5 9

3 5 7

3 5 1

7 3 9

3 3 6

7 2 0

3 5 5

3 5 9

3 5 7

3 5 1

3 3 6

3 5 5

7 3 9

7 2 0

Algorithm

for i = 1 to d do
sort array A on digit i using any sorting algorithm

Time Complexity: O((N+m) + (N+m2) + …+ (N+md))

3 3 6

3 5 9

3 5 7

3 5 1

3 5 5

7 2 0

7 3 9

3 3 6

3 5 1

3 5 5

3 5 7

3 5 9

7 2 0

8 3 9

Space Complexity: O(md)

COT 5407 1/24/17

!6 Radix Sort
3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Algorithm
for i = 1 to d do

sort array A on digit i using a stable sort algorithm

Time Complexity: O((n+m)d)

•Warning: This algorithm cannot be used for “infinite-precision”
real numbers, even if the range of values is specified.

COT 5407 1/24/17

!7 Counting Sort
1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3

0 1 2 3 4 5

2 0 2 3 0 1

0 1 2 3 4 5

2 2 4 7 7 8

Initial Array

Counts

Cumulative
Counts

•Warning: This algorithm cannot be used for “infinite-precision”
real numbers, even if the range of values is specified.

COT 5407

Tree Sorting
! BST is a search structure that helps efficient search

! Search can be done in O(h) time, where h = height of BST
! Also inserts and deletes can be done in O(h) time
! Unfortunately, Height h = O(N)

! Balanced BST improves BST with h = O(log N)
! Thus search can be done in O(log N)
! And, inserts and deletes too can be done in O(log N) time

! We can use BBSTs in the following way:
! Repeatedly insert N items into a BBST
! Repeatedly delete the smallest item from the BBST until it is empty

! N inserts and N deletes can be done in O(N log N) time

1/26/17

!8

COT 5407 9/30/08

!9 Order Statistics
! Maximum, Minimum

! Upper Bound
! O(n) because ??
! We have an algorithm with a single for-loop: n-1 comparisons

! Lower Bound
!n-1 comparisons

! MinMax
! Upper Bound: 2(n-1) comparisons
! Lower Bound: 3n/2 comparisons

! Max and 2ndMax
! Upper Bound: (n-1) + (n-2) comparisons
! Lower Bound: Harder to prove

7 3 1 9 4 8 2 5 0

RankA(x) =
position of x in
sorted order of A

COT 5407 9/30/08

!10 k-Selection; Median
! Select the k-th smallest item in list
! Naïve Solution

! Sort;
! pick the k-th smallest item in sorted list.
 O(n log n) time complexity

! Idea: Modify Partition from QuickSort
! How?

! Randomized solution: Average case O(n)
! Improved Solution: worst case O(n)

COT 5407

Using Partition for k-Selection

! Perform Partition from
QuickSort (assume all
unique items)

! Rank(pivot) = 1 + # of items
that are smaller than pivot

! If Rank(pivot) = k, we are
done

! Else, recursively perform k-
Selection in one of the two
partitions

1/26/17

!11

COT 5407 9/30/08

!12 QuickSelect: a variant of QuickSort

COT 5407

k-Selection Time Complexity
! Perform Partition from QuickSort (assume all unique items)
! Rank(pivot) = 1 + # of items that are smaller than pivot
! If Rank(pivot) = k, we are done
! Else, recursively perform k-Selection in one of the two partitions

1/26/17

!13

• On the average:
▪ Rank(pivot) = n / 2

• Average-case time
▪ T(N) = T(N/2) + O(N)
▪ T(N) = O(N)

• Worst-case time
▪ T(N) = T(N-1) + O(N)
▪ T(N) = O(N2)

COT 5407 9/30/08

!14 Randomized Solution for k-Selection
! Uses RandomizedPartition instead of Partition

! RandomizedPartition picks the pivot uniformly at
random from among the elements in the list to be
partitioned.

! Randomized k-Selection runs in O(N) time on
the average

! Worst-case behavior is very poor O(N2)

