COT 5407: Introduction to Algorithms Giri NARASIMHAN

 www.cs.fiu.edu/~giri/teach/5407S19.html
2
 Room Scheduling Problem

- Given a set of requests to use a room
- [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14]
- Schedule largest number of above requests in the room
- Different approaches
- Try by hand, exhaustive search, improve an initial solution, iterative methods, divide and conquer, greedy methods, etc.
Simple Greedy Selection
- Sort by start time and pick in "greedy" fashion
- Does not work. WHY?
- [0,6], [6,10] is the solution you will end up with.
- Other greedy strategies
- Sort by length of interval
- Does not work. WHY?

Greedy Algorithms

- Given a set of activities $\left(s_{i}, f_{i}\right)$, we want to schedule the maximum number of non-overlapping activities.
- GREEDY-ACTIVITY-SELECTOR (s, f)

1. $\mathrm{n}=$ length[s]
2. $S=\left\{a_{1}\right\}$
3. $i=1$
4. for $m=2$ to n do
5. if s_{m} is not before f_{i} then
6. $S=S U\left\{a_{m}\right\}$
7. $\quad i=m$
${ }^{c o t s e}$ 8. return S

Why does it work?

- THEOREM

Let A be a set of activities and let a_{1} be the activity with the earliest finish time. Then activity a_{1} is in some maximum-sized subset of non-overlapping activities.

- PROOF

Let S^{\prime} be a solution that does not contain a_{1}. Let a_{1} be the activity with the earliest finish time in S^{\prime}. Then replacing a_{1} by a_{1} gives a solution S of the same size.
Why are we allowed to replace? Why is it of the same size?

New Room Scheduling Problem

- Room Scheduling with Attendee Numbers: Given a set of requests to use a room (with \# of attendees)
- $[1,4](4),[3,5](8),[0,6](5),[5,7](15),[3,8](22),[5,9](6),[6,10]$
(5), [8,11] (5), [8,12] (14), [2,13] (11), [12,14] (6)
- Schedule requests to maximize the total \# of attendees
- Greedy Solution will be [1,4], [5,7], [8,11], [12,14]
- And will satisfy $4+15+5+6=30$ attendees
- Greed is not good!

Dynamic Programming

- Old Activity Problem Revisited: Given a set of n activities $a_{i}=\left(s_{i}, f_{i}\right)$, we want to schedule the maximum number of non-overlapping activities.
- General Approach: Attempt a recursive solution

Recursive Solution

- Observation: To solve the problem on activities $A=\left\{a_{1}, \ldots, a_{n}\right\}$, we notice that either
- optimal solution does not include a_{n}
- then enough to solve subproblem on $A_{n-1}=\left\{a_{1}, \ldots, a_{n-1}\right\}$
- optimal solution includes a_{n}
- Enough to solve subproblem on $A_{k}=\left\{a_{1}, \ldots, a_{k}\right\}$, the set A without activities that overlap a_{n}.

Recursive Solution

int Rec-ROOM-SCHEDULING ($\mathbf{s}, \mathrm{f}, \mathrm{t}, \mathrm{n}$)

// Here n equals length[s];
// Input: first n requests with their s \& f times \& \# attend
// It returns optimal number of requests scheduled

1. Let k be index of last request with finish time before s_{n}
2. Output larger of two values:
3.

\{ Rec-ROOM-SCHEDULING ($\mathbf{s}, \mathrm{f}, \mathrm{n}-1$),
Rec-ROOM-SCHEDULING (s, f, k) + t[n] \}
// $\dagger[n]$ is number of attendees of n-th request

Observations

- If we look at all subproblems generated by the recursive solution, and ignore repeated calls, then we see the following calls:
- Rec-ROOM-SCHEDULING ($\mathrm{s}, \mathrm{f}, \mathrm{n}$-1)
- Rec-ROOM-SCHEDULING (s, f, n-2)
- Rec-ROOM-SCHEDULING (s, f, n')
-
- Rec-ROOM-SCHEDULING (s, f, k)
- Rec-ROOM-SCHEDULING (s, f, k-1)
-
- Rec-ROOM-SCHEDULING (s, f, k')
- ...
- Above list includes all subproblems Rec-ROOM-SCHEDULING (s, f, i) for all values of i between 1 and n

Dynamic Prog: Room Scheduling

- Let A be the set of n activities $\mathrm{A}=\left\{\mathrm{a}_{1}, \ldots, a_{n}\right\}$ (sorted by finish times).
- The inputs to the subproblems are:
$A_{1}=\left\{a_{1}\right\}$
$A_{2}=\left\{a_{1}, a_{2}\right\}$
$A_{3}=\left\{a_{1}, a_{2}, a_{3}\right\}, \ldots$,
$A_{n}=A$
- i-th Subproblem: Select the max number of nonoverlapping activities from A_{i}

An efficient implementation

- Why not solve the subproblems on $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$ in that order?
- Is the problem on A_{1} easy?
- Can the optimal solutions to the problems on A_{1}, \ldots, A_{i} help to solve the problem on A_{i+1} ?
- YES! Either:
- optimal solution does not include a_{i+1}
- problem on A_{i}
- optimal solution includes a_{i+1}
- problem on A_{k} (equal to A_{i} without activities that overlap a_{i+1})
- but this has already been solved according to our ordering.

Dynamic Prog: Room Scheduling

- Solving for A_{n} solves the original problem.
- Solving for A_{1} is easy.
- If you have optimal solutions S_{1}, \ldots, S_{i-1} for subproblems on A_{1}, ..., A_{i-1}, how to compute S_{i} ?
Recurrence Relation:
- The optimal solution for A_{i} either
- Case 1: does not include a_{i} or
- Case 2: includes a_{i}
- Case 1: $\mathrm{s}_{\mathrm{i}}=\mathrm{s}_{\mathrm{i}-1}$
- Case 2: $s_{\mathrm{i}}=s_{\mathrm{k}} \cup\left\{a_{i}\right\}$, for some $\mathrm{k}<\mathrm{i}$.
- How to find such a k? We know that a_{k} cannot overlap a_{i}.

13
 DP: Room Scheduling w/ Attendees

- DP-ROOM-SCHEDULING-w-ATTENDEES (s, f, t)

1. $\mathrm{n}=$ length[s]
2. $N[1]=t_{1} \quad / /$ number of attendees in S_{1}
3. $\mathrm{F}[1]=1 \quad / /$ last activity in S_{1}
4. $f o r i=2$ to $n d o$
5. let k be the last activity finished before s_{i}
6. if $\left(N[i-1]>N[k]+t_{i}\right)$ then // Case 1
7. $N[i]=N[i-1]$
8. $\quad \mathrm{F}[\mathrm{i}]=\mathrm{F}[\mathrm{i}-1]$
9. else // Case 2
10. $N[i]=N[k]+t_{i}$
11. $\quad \mathrm{F}[\mathrm{i}]=$ I

How to output S_{n} ?
Backtrack!
Time Complexity?
$O(n \lg n)$
12. Output $\mathrm{N}[\mathrm{n}]$

Approach to DP Problems

- Write down a recursive solution
- Use recursive solution to identify list of subproblems to solve (there must be overlapping subproblems for effective DP)
Decide a data structure to store solutions to subproblems (MEMOIZATION)
- Write down Recurrence relation for solutions of subproblems
- Identify a hierarchy/order for subproblems
- Write down non-recursive solution/algorithm

Longest Common Subsequence

$S_{1}=$ CORIANDER CORIANDER
$S_{2}=$ CREDITORS CREDITORS
Longest Common Subsequence($\left.S_{1}[1 . .9], S_{2}[1 . .9]\right)$
= CRIR

Recursive Solution

$\operatorname{LCS}\left(S_{1}, S_{2}, m, n\right)$
$/ / m$ is length of S_{1} and n is length of S_{2}
// Returns length of longest common subsequence

1. If $\left(S_{1}[m]==S_{2}[n]\right)$, then
2. return $1+\operatorname{LCS}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~m}-1, \mathrm{n}-1\right)$
3. Else return larger of
4. $\operatorname{LCS}\left(S_{1}, S_{2}, m-1, n\right)$ and $\operatorname{LCS}\left(S_{1}, S_{2}, m, n-1\right)$

Observation:
All the recursive calls correspond to subproblems to solve and they include $\operatorname{LCS}\left(S_{1}, S_{2}, i, j\right)$ for all i between 1 and m, and all j between 1 and n

Recurrence Relation \& Memoization

- Recurrence Relation:
- LCS[i,j] = LCS[i-1, j-1] +1, if $\mathrm{S}_{1}[\mathrm{i}]=\mathrm{S}_{2}[\mathrm{j}]$)
$\operatorname{LCS}[i, j]=\max \{\operatorname{LCS}[i-1, j], \operatorname{LCS}[i, j-1]\}$, otherwise
- Table (m X n table)
- Hierarchy of Solutions?
- Solve in row major order

LCS Problem

