
CAP 5510 / CGS 5166

COT 5407: Introduction
to Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407S19.html
2/12/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407 2/7/17

!2 Room Scheduling Problem
! Given a set of requests to use a room

! [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14]
! Schedule largest number of above requests in the room
! Different approaches

! Try by hand, exhaustive search, improve an initial solution, iterative
methods, divide and conquer, greedy methods, etc.

! Simple Greedy Selection
! Sort by start time and pick in “greedy” fashion
! Does not work. WHY?

! [0,6], [6,10] is the solution you will end up with.
! Other greedy strategies

! Sort by length of interval
! Does not work. WHY?

COT 5407 2/7/17

!3 Greedy Algorithms
! Given a set of activities (si, fi), we want to schedule the

maximum number of non-overlapping activities.
! GREEDY-ACTIVITY-SELECTOR (s, f)

1. n = length[s]
2. S = {a1}
3. i = 1
4. for m = 2 to n do
5. if sm is not before fi then
6. S = S U {am}
7. i = m
8. return S

COT 5407 2/7/17

!4 Why does it work?
! THEOREM
 Let A be a set of activities and let a1 be the activity with

the earliest finish time. Then activity a1 is in some
maximum-sized subset of non-overlapping activities.

! PROOF
 Let S’ be a solution that does not contain a1. Let a’1 be the

activity with the earliest finish time in S’. Then replacing a’1
by a1 gives a solution S of the same size.

 Why are we allowed to replace? Why is it of the same
size?

Then apply induction! How?

COT 5407 2/7/17

!5 New Room Scheduling Problem

! Room Scheduling with Attendee Numbers: Given a set
of requests to use a room (with # of attendees)
! [1,4] (4), [3,5] (8), [0,6] (5), [5,7] (15), [3,8] (22), [5,9] (6), [6,10]

(5), [8,11] (5), [8,12] (14), [2,13] (11), [12,14] (6)
! Schedule requests to maximize the total # of

attendees
! Greedy Solution will be [1,4], [5,7], [8,11], [12,14]
! And will satisfy 4 + 15 + 5 + 6 = 30 attendees
! Greed is not good!

COT 5407 2/9/17

!6 Dynamic Programming

! Old Activity Problem Revisited: Given a set of
n activities ai = (si, fi), we want to schedule the
maximum number of non-overlapping
activities.

! General Approach: Attempt a recursive
solution

COT 5407

Recursive Solution

! Observation: To solve the problem on
activities A = {a1,…,an}, we notice that either
! optimal solution does not include an

!then enough to solve subproblem on An-1= {a1,…,an-1}

! optimal solution includes an
!Enough to solve subproblem on Ak = {a1,…,ak}, the set A

without activities that overlap an.

2/9/17

!7

COT 5407

Recursive Solution

int Rec-ROOM-SCHEDULING (s, f, t, n)
 // Here n equals length[s];
// Input: first n requests with their s & f times & # attend
// It returns optimal number of requests scheduled
1. Let k be index of last request with finish time before sn
2. Output larger of two values:
3. { Rec-ROOM-SCHEDULING (s, f, n-1),
 Rec-ROOM-SCHEDULING (s, f, k) + t[n] }

 // t[n] is number of attendees of n-th request
2/9/17

!8

COT 5407

Observations
! If we look at all subproblems generated by the recursive solution,

and ignore repeated calls, then we see the following calls:
! Rec-ROOM-SCHEDULING (s, f, n-1)

! Rec-ROOM-SCHEDULING (s, f, n-2)
! …

! Rec-ROOM-SCHEDULING (s, f, n’)
! …

! Rec-ROOM-SCHEDULING (s, f, k)
! Rec-ROOM-SCHEDULING (s, f, k-1)

! …
! Rec-ROOM-SCHEDULING (s, f, k’)

! …

! Above list includes all subproblems Rec-ROOM-SCHEDULING (s, f,
i) for all values of i between 1 and n

2/9/17

!9

COT 5407 2/9/17

!10 Dynamic Prog: Room Scheduling
! Let A be the set of n activities A = {a1, …, an} (sorted by

finish times).
! The inputs to the subproblems are:
 A1 = {a1}
 A2 = {a1, a2}
 A3 = {a1, a2, a3}, …,
 An = A
! i-th Subproblem: Select the max number of non-

overlapping activities from Ai

COT 5407 2/9/17

!11 An efficient implementation
! Why not solve the subproblems on A1, A2, …, An-1, An in that

order?
! Is the problem on A1 easy?
! Can the optimal solutions to the problems on A1,…,Ai help

to solve the problem on Ai+1?
! YES! Either:

!optimal solution does not include ai+1
! problem on Ai

!optimal solution includes ai+1
! problem on Ak (equal to Ai without activities that overlap ai+1)
! but this has already been solved according to our ordering.

COT 5407 2/9/17

!12 Dynamic Prog: Room Scheduling
! Solving for An solves the original problem.
! Solving for A1 is easy.
! If you have optimal solutions S1, …, Si-1 for subproblems on A1,

…, Ai-1, how to compute Si?
! Recurrence Relation:

! The optimal solution for Ai either
!Case 1: does not include ai or
!Case 2: includes ai

! Case 1: Si = Si-1
! Case 2: Si = Sk U {ai}, for some k < i.

!How to find such a k? We know that ak cannot overlap ai.

COT 5407 2/9/17

!13 DP: Room Scheduling w/ Attendees
! DP-ROOM-SCHEDULING-w-ATTENDEES (s, f, t)

1. n = length[s]
2. N[1] = t1 // number of attendees in S1
3. F[1] = 1 // last activity in S1
4. for i = 2 to n do
5. let k be the last activity finished before si
6. if (N[i-1] > N[k] + ti) then // Case 1
7. N[i] = N[i-1]
8. F[i] = F[i-1]
9. else // Case 2
10. N[i] = N[k] + ti
11. F[i] = I
12. Output N[n]

How to output Sn?
 Backtrack!
Time Complexity?
 O(n lg n)

COT 5407 2/9/17

!14 Approach to DP Problems
! Write down a recursive solution
! Use recursive solution to identify list of

subproblems to solve (there must be overlapping
subproblems for effective DP)

! Decide a data structure to store solutions to
subproblems (MEMOIZATION)

! Write down Recurrence relation for solutions of
subproblems

! Identify a hierarchy/order for subproblems
! Write down non-recursive solution/algorithm

COT 5407 2/9/17

!15 Longest Common Subsequence

 S1 = CORIANDER CORIANDER

 S2 = CREDITORS CREDITORS

Longest Common Subsequence(S1[1..9], S2[1..9])
= CRIR

COT 5407

Recursive Solution
LCS(S1, S2, m, n)
// m is length of S1 and n is length of S2
// Returns length of longest common subsequence
1. If (S1[m] == S2[n]), then
2. return 1 + LCS(S1, S2, m-1, n-1)
3. Else return larger of
4. LCS(S1, S2, m-1, n) and LCS(S1, S2, m, n-1)

Observation:
All the recursive calls correspond to subproblems to solve and they
include LCS(S1, S2, i, j) for all i between 1 and m, and all j between 1 and n

2/9/17

!16

COT 5407

Recurrence Relation & Memoization
! Recurrence Relation:

! LCS[i,j] = LCS[i-1, j-1] + 1, if S1[i] = S2[j])
 LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise

! Table (m X n table)
! Hierarchy of Solutions?

! Solve in row major order

2/9/17

!17

COT 5407 2/9/17

!18

LCS Problem
LCS_Length (X, Y)
1. m ! length[X]
2. n ! Length[Y]
3. for i = 1 to m
4. do c[i, 0] ! 0
5. for j =1 to n
6. do c[0,j] !0
7. for i = 1 to m
8. do for j = 1 to n
9. do if (xi = yj)
10. then c[i, j] ! c[i-1, j-1] + 1
11. b[i, j] ! “ ”
12. else if c[i-1, j] c[i, j-1]
13. then c[i, j] ! c[i-1, j]
14. b[i, j] ! “↑”
15. else
16. c[i, j] ! c[i, j-1]
17. b[i, j] ! “←”
18. return c[m,n]

