
CAP 5510 / CGS 5166

COT 5407: Introduction
to Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407S19.html
2/18/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407 2/9/17

!2 Approach to DP Problems
! Write down a recursive solution
! Use recursive solution to identify list of

subproblems to solve (there must be overlapping
subproblems for effective DP)

! Decide a data structure to store solutions to
subproblems (MEMOIZATION)

! Write down Recurrence relation for solutions of
subproblems

! Identify a hierarchy/order for subproblems
! Write down non-recursive solution/algorithm

COT 5407 2/9/17

!3 Dynamic Programming Features

! Identification of subproblems
! Recurrence relation for solution of subproblems
! Overlapping subproblems (sometimes)
! Identification of a hierarchy/ordering of

subproblems
! Use of table to store solutions of subproblems

(MEMOIZATION)
! Optimal Substructure

COT 5407 2/9/17

!4

Dynamic Programming vs. Divide-&-conquer

! Divide-&-conquer works best when all subproblems are
independent. So, pick partition that makes algorithm
most efficient & simply combine solutions to solve entire
problem.

! Dynamic programming is needed when subproblems are
dependent; we don’t know where to partition the
problem.

 For example, let S1= {ALPHABET}, and S2 = {HABITAT}.
 Consider the subproblem with S1ʹ = {ALPH}, S2ʹ = {HABI}.
 Then, LCS (S1ʹ, S2ʹ) + LCS (S1-S1ʹ, S2-S2ʹ) ≠ LCS(S1, S2)
! Divide-&-conquer is best suited for the case when no

“overlapping subproblems” are encountered.
! In dynamic programming algorithms, we typically solve

each subproblem only once and store their solutions. But
this is at the cost of space.

COT 5407 2/9/17

!5 Dynamic programming vs Greedy
1. Dynamic Programming solves the sub-problems bottom up. The

problem can’t be solved until we find all solutions of sub-problems.
The solution comes up when the whole problem appears.

 Greedy solves the sub-problems from top down. We first need to
find the greedy choice for a problem, then reduce the problem to
a smaller one. The solution is obtained when the whole problem
disappears.

2. Dynamic Programming has to try every possibility before solving
the problem. It is much more expensive than greedy. However,
there are some problems that greedy can not solve while dynamic
programming can. Therefore, we first try greedy algorithm. If it fails
then try dynamic programming.

COT 5407 2/9/17

!6 0-1 Knapsack Problem
! Burglar’s choices:
 Items: x1, x2, …, xn
 Value: v1, v2, …, vn
 Weight: w1, w2, …, wn
 Getaway Truck has a weight limit of B.
 Burglar cannot take “fractional” amount of item.
 How can burglar maximize value of the loot?
! Greedy Algorithm does not work! Why?
! Need dynamic programming!

COT 5407 2/9/17

!7 0-1 Knapsack Problem
! 0. Definitions

! V[j, L] = Optimal solution for knapsack problem assuming
a truck of weight limit L and choice of items from set {1,2,
…, j}.

! V[n, B] = Optimal solution for original problem
! V[1, L] = easy to compute for all values of L.

! 1. Recursive Solution: [Either xj included or not]
! V[n, B] = max { V[n-1, B], vn + V[n-1, B-wn] }

CAP 5510 / CGS 5166

0-1 Knapsack: Recursion

V[n,B]

V[n-1, B]

V[n-2,B] V[n-2,B-wn-1]

V[n-1,B-wn]

V[n-2,B-wn] V[n-2,B-wn-
wn-1]

2/18/19

!8

Recursion
terminates at

V[I,W], which is
easy to compute

COT 5407 2/9/17

!9 0-1 Knapsack Problem
! Subproblems?

! V[j, L] = Optimal solution for knapsack problem assuming a
truck of weight limit L and choice of items from set {1,2,…, j}.

! V[n, B] = Optimal solution for original problem
! V[1, L] = easy to compute for all values of L.

! Table of solutions?
! V[1..n, 1..B]

! Ordering of subproblems?
! Row-wise

! Recurrence Relation? [Either xj included or not]
! V[j, L] = max { V[j-1, L], vj + V[j-1, L-wj] }

CAP 5510 / CGS 5166

0-1 Knapsack Algorithm
! For wt = 1 to B do

! If (wt < w1) then V[1,wt] = 0 else V[1,wt] = w1

! For item = 2 to n do
! For wt = 1 to B do

! if (V[Item -1, wt] >= V[Item -1, wt - wItem] + vItem) then
! V[Item, wt] = V[Item -1, wt]

!Else V[Item, wt] = V[Item -1, wt - wItem] + vItem

! Return V[n, B]
2/18/19

!10

O(nB)

COT 5407 2/9/17

!11 1-d, 2-d, 3-d Dynamic Programming
! Classification based on the dimension of the table

used to store solutions to subproblems.
! 1-dimensional DP

! Activity Problem
! 2-dimensional DP

! LCS Problem
! 0-1 Knapsack Problem
! Matrix-chain multiplication

! 3-dimensional DP
! All-pairs shortest paths problem

