COT 5407: Introduction to Algorithms Giri NARASIMHAN

 www.cs.fiu.edu/~giri/teach/5407S19.html
Approach to DP Problems

- Write down a recursive solution
- Use recursive solution to identify list of subproblems to solve (there must be overlapping subproblems for effective DP)
Decide a data structure to store solutions to subproblems (MEMOIZATION)
- Write down Recurrence relation for solutions of subproblems
- Identify a hierarchy/order for subproblems
- Write down non-recursive solution/algorithm

DP Problems

- Find a recursive solution

- For what purpose?
- To reduce the problem to one or more simpler problems
- reduce the size of the input by imposing conditions
- e.g., if we know something about last/ttem in input or
- e.g., if we know how to break up the problem/solution

Car removal problem

1. Either the last one is removed ...

- We now have a subproblem with only $\mathrm{N}-1$ cars.
- Problem with cars 1, 2, ... N-1

2. Or it stays ...

- We retain last car, and get a constrained subproblem as we know that the second to last must match last car.
- Problem with cars $1,2, \ldots \mathrm{~K}$ where K is last car matching car N

List of Subproblems

- This will become clear if we follow the recursion one or two more steps In this case:
- Problems on cars $1,2, \ldots, k$ for different values of k

List of Subproblems

- The inputs to the subproblems are:

$$
\begin{aligned}
& \mathrm{L}_{1}=\left\{\mathrm{c}_{1}\right\} \\
& \mathrm{L}_{2}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}\right\} \\
& \mathrm{L}_{3}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}\right\},
\end{aligned}
$$

$L_{n}=$ set of all cars

- Memoization is thus obvious:
A[1] = solution to L_{1}
$A[2]=$ solution to L_{2}
$A[3]=$ solution to L_{3}
$A[n]=$ solution to L_{n}
A[j] = least number of cars to be removed when the input is L_{j}

Recurrence Relation for A[j]

1. Either car j is removed ...

- We now have a subproblem with only j-1 cars.
- Problem with cars 1, 2, ... j-1

Incorrect

- $A[j]=1+A[j-1]$

2. Or it stays ...

- We retain last car, and get a constrained subproblem as we know that the second to last must match last car.
- Problem with cars 1, 2, ... K where K is last car matching car j
- $A[j]=(j-K-1)+A[K]$
$-A[j]=(j-K-1)+A[K] \longrightarrow A[j]=\min _{K}\{(j-K-1)+A[K]\}$
- We don't know whether A[j] refers to a solution that includes car j or not. This will dictate what car can be appended at the end of the solution to this subproblem
- For e.g., if input is
- $(1,2),(2,3),(3,4),(2,5),(5,6),(6,7)$

Minor change in Memoization

- $A[j]=$ least number of cars to be removed when the input is L_{j} and car j is included $\mathrm{B}[\mathrm{j}]=$ least number of cars to be removed when the input is L_{j} and car j is not included

Recurrence Relation for $\mathrm{A}[\mathrm{j}]$, $\mathrm{B}[\mathrm{j}]$

1. Either car j is removed ...

- We now have a subproblem with only j-1 cars.
- Problem with cars 1, 2, ... j-1
- $B[j]=1+\min \{A[j-1], B[j-1]\}$

2. Or it stays ...

- We retain last car, and get a constrained subproblem as we know that the second to last must match last car.
- Problem with cars $1,2, \ldots \mathrm{~K}$ where K is last car matching car j
- $A[j]=\min \{(j-K-1)+A[K]\}$

1. What to return?

- $\operatorname{Min}\{A[n], B[n]\}$

12. Time Complexity

- $O\left(n^{2}\right)$

RB-Trees

OS-Rank

OS-RANK(x,y)
// Different from text (recursive version)
// Find the rank of x in the subtree rooted at y
$1 \mathrm{r}=$ size[left[y]] +1
2 if $x=y$ then return r
3 else if ($k e y[x]$ < $k e y[y]$) then
4 return OS-RANK(x,left[y])
5 else return r + OS-RANK(x,right[y])

Time Complexity O(log $n)$

How to augment data structures

1. choose an underlying data structure
2. determine additional information to be maintained in the underlying data structure,
3. develop new operations,
4. verify that the additional information can be maintained for the modifying operations on the underlying data structure.

${ }^{16}$ Augmenting RB-Trees

Theorem 14.1, page 309
Let f be a field that augments a red-black tree T with n nodes, and $f(x)$ can be computed using only the information in nodes x, left[x], and right[x], including f[left[x]] and f[right[x]].
Then, we can maintain $f(x)$ during insertion and deletion without asymptotically affecting the $\mathrm{O}(\log \mathrm{n})$ performance of these operations.
For example,

$$
\begin{aligned}
& \operatorname{size}[x]=\operatorname{size}[\operatorname{left}[x]]+\operatorname{size}[\operatorname{right}[x]]+1 \\
& \operatorname{rank}[x]=\text { ? }
\end{aligned}
$$

Rank cannot be maintained because of this theorem.

- Parent
- Height

Any associative function on all previous values or all succeeding values.

- Next
- Previous

Augmented Info

- OddSize[v]
- Number of odd valued nodes in subtree rooted at v

It can be maintained because:

- OddSize[v] = OddSize[Left[v]]
+ OddSize[Right[v]]
+ (key[v] \% 2)

OS-SoOdd

OS-SoOdd(x, y)
// Different from text (recursive version)
// Find the rank of x in the subtree rooted at y
1 r = OddSize[left[y]] + key[x] \% 2
2 if $x=y$ then return r
3 else if (key[x] < key[y]) then
4 return OS-SoOdd (x, left[y])
5 else return $r+$ OS-SoOdd (x, right[y])
Time Complexity O(log n)

More Dynamic Operations

	Search	Insert	Delete	Comments
Unsorted Arrays	$\mathrm{O}(\mathrm{N})$	O(1)	$\mathrm{O}(\mathrm{N})$	
Sorted Arrays	$O(\log N)$	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$	
Unsorted Linked Lists	$\mathrm{O}(\mathrm{N})$	O(1)	$\mathrm{O}(\mathrm{N})$	
Sorted Linked Lists	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$	
Binary Search Trees	$\mathrm{O}(\mathrm{H})$	$\mathrm{O}(\mathrm{H})$	$\mathrm{O}(\mathrm{H})$	$H=O(N)$
Balanced BSTs	$O(\log N)$	$\mathrm{O}(\log \mathrm{N})$	$O(\log N)$	As $\mathrm{H}=\mathrm{O}(\log \mathrm{N})$
	Se/In/De	Rank	Select	Comments
Balanced BSTs	$O(\log N)$	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$	
Augmented BBSTs	$O(\log N)$	$O(\log N)$	$O(\log N)$	

