
CAP 5510 / CGS 5166

COT 5407: Introduction 
to Algorithms
Giri NARASIMHAN 

www.cs.fiu.edu/~giri/teach/5407S19.html 
3/5/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html


COT 5407 2/9/17

!2 Approach to DP Problems
! Write down a recursive solution 
! Use recursive solution to identify list of 

subproblems to solve (there must be overlapping 
subproblems for effective DP) 

! Decide a data structure to store solutions to 
subproblems (MEMOIZATION) 

! Write down Recurrence relation for solutions of 
subproblems 

! Identify a hierarchy/order for subproblems 
! Write down non-recursive solution/algorithm
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DP Problems

! Find a recursive solution 
! For what purpose? 
! To reduce the problem to one or more simpler 

problems 
! reduce the size of the input by imposing conditions 
! e.g., if we know something about last item in input or 
! e.g., if we know how to break up the problem/solution
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Because of 
“Optimal 

Substructure 
Property”
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Car removal problem

1. Either the last one is removed … 
! We now have a subproblem with only N-1 cars.  

! Problem with cars 1, 2, … N-1 

2. Or it stays … 
! We retain last car, and get a constrained subproblem as we 

know that the second to last must match last car.  
! Problem with cars 1, 2, … K where K is last car matching car N

3/5/19

!4



CAP 5510 / CGS 5166

List of Subproblems

! This will become clear if we follow the recursion 
one or two more steps 

! In this case: 
! Problems on cars 1, 2, …, k for different values of k
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List of Subproblems

! The inputs to the 
subproblems are: 

 L1 = {c1} 
 L2 = {c1, c2} 
 L3 = {c1, c2, c3},  
 …, 
 Ln = set of all cars

! Memoization is thus 
obvious: 

 A[1] = solution to L1 
 A[2] = solution to L2 
 A[3] = solution to L3 
 … 
 A[n] = solution to Ln
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!6 May be 
refined 

later

A[j] = least number of cars to be 
removed when the input is Lj
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Recurrence Relation for A[j]
1. Either car j is removed … 

! We now have a subproblem with only j-1 cars.  
! Problem with cars 1, 2, … j-1 
! A[j] = 1 + A[j-1] 

2. Or it stays … 
! We retain last car, and get a constrained subproblem as we 

know that the second to last must match last car.  
! Problem with cars 1, 2, … K where K is last car matching car j 
! A[j] = (j-K-1) + A[K] 
! A[j] = (j-K-1) + A[K]                A[j] = minK { (j-K-1) + A[K] }
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Incorrect 
Solution
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Why is the solution incorrect?

! We don’t know whether A[j] refers to a 
solution that includes car j or not. This will 
dictate what car can be appended at the 
end of the solution to this subproblem 

! For e.g., if input is  
! (1,2), (2,3), (3, 4), (2,5), (5,6), (6,7)
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Minor change in Memoization

! A[j] = least number of cars to be removed 
when the input is Lj and car j is included 

! B[j] = least number of cars to be removed 
when the input is Lj and car j is not included
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Recurrence Relation for A[j], B[j]
1. Either car j is removed … 

! We now have a subproblem with only j-1 cars.  
! Problem with cars 1, 2, … j-1 
! B[j] = 1 + min{ A[j-1], B[j-1] } 

2. Or it stays … 
! We retain last car, and get a constrained subproblem as 

we know that the second to last must match last car.  
! Problem with cars 1, 2, … K where K is last car matching car j 
! A[j] = min{ (j-K-1) + A[K] } 
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What to return? 

! Min { A[n], B[n] }

3/5/19

!11



CAP 5510 / CGS 5166

Time Complexity

! O(n2)
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RB-Trees
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!14 OS-Rank
OS-RANK(x,y)  
// Different from text (recursive version) 
// Find the rank of x in the subtree rooted at y 
1  r = size[left[y]] + 1 
2  if x = y then return r 
3 else if ( key[x] < key[y] ) then  
4  return OS-RANK(x,left[y]) 
5 else return r + OS-RANK(x,right[y] )

Time Complexity O(log n)
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!15 How to augment data structures

1. choose an underlying data structure 
2. determine additional information to be 

maintained in the underlying data structure, 
3. develop new operations, 
4. verify that the additional information can be 

maintained for the modifying operations on 
the underlying data structure.
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!16 Augmenting RB-Trees
Theorem 14.1, page 309 
 Let f be a field that augments a red-black tree T with n nodes, 

and f(x) can be computed using only the information in 
nodes x, left[x], and right[x], including f[left[x]] and f[right[x]]. 

 Then, we can maintain f(x) during insertion and deletion 
without asymptotically affecting the O(log n) performance of 
these operations. 

For example, 
 size[x] = size[left[x]] + size[right[x]] + 1 
 rank[x] = ?

Rank cannot be 
maintained 

because of this 
theorem. 
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!17 Augmenting information for RB-Trees

! Parent 
! Height 
! Any associative function on all previous 

values or all succeeding values.  
! Next 
! Previous
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Augmented Info

! OddSize[v] 
! Number of odd valued nodes in subtree rooted at v 

! It can be maintained because: 
! OddSize[v] =  
 OddSize[Left[v]]  
 + OddSize[Right[v]]  
 + (key[v] % 2)
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!19 OS-SoOdd
OS-SoOdd(x,y)  
// Different from text (recursive version) 
// Find the rank of x in the subtree rooted at y 
1  r = OddSize[left[y]] + key[x] % 2 
2  if x = y then return r 
3 else if ( key[x] < key[y] ) then  
4  return OS-SoOdd (x, left[y]) 
5 else return r + OS-SoOdd (x, right[y])

Time Complexity O(log n)



More Dynamic Operations

Se/In/De Rank Select Comments

Balanced BSTs O(log N) O(N) O(N)

Augmented BBSTs O(log N) O(log N) O(log N)

Search Insert Delete Comments

Unsorted Arrays O(N) O(1) O(N)

Sorted Arrays O(log N) O(N) O(N)

Unsorted Linked 
Lists O(N) O(1) O(N)

Sorted Linked Lists O(N) O(N) O(N)

Binary Search Trees O(H) O(H) O(H) H = O(N)

Balanced BSTs O(log N) O(log N) O(log N) As H = O(log N)


