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Correctness of Dijkstra’s Alg
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Analysis of Dijkstra’s Algorithm

! O(n) calls to INSERT, EXTRACT-MIN 
! O(m) calls to DECREASE-KEY
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Approach Insert Dec-Key Extract-Min Total

PQ in Arrays O(1) O(1) O(n) O(n2)

Heaps O(log n) O(log n) O(log n) O((m+n)log n)

Fibonacci Heaps O(1)* O(1)* O(log n)* O(m + n log n)*

* Amortized Time Complexity
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SSSP Algorithms

! Dijkstra’s algorithm (only non-negative edges 
allowed) 
! Best: O(m + n log n) 

! Bellman-Ford algorithm (allows non-negative 
edges, but less efficient) 
! Repeated RELAX steps until we have answers 
! O(mn) time complexity
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!5 All Pairs Shortest Path Algorithm

Need to find shortest paths (or length) between 
every pair of vertices 
! Invoke Dijkstra’s SSSP algorithm n times. 
! Or an alternative approach …
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Structure of a Shortest Path

! Optimal substructure property 
! Every subpath of a shortest path is “optimal”, i.e., 

it is a shortest path between the relevant vertices.  
! Can we use DP?  

! Invent appropriate subproblems to cast it as a DP
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Idea!

! In iteration k, find SPk(u,v), shortest paths 
between u and v that use at most k edges 

! Iteration 1: find all shortest paths that use at 
most 1 edge 
! Every edge (u,v) is a SP between u and v 
! Every non-edge (u,v) means no SP exists between u 

and v using at most one edge
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Iteration k

! We already have SPk-1(u,v) from iteration k-1 
! If path of length k between u & v exists, then path 

of length k-1 exists between u and a neighbor of v 
! SPk(u,v) can be computed as follows: 

! SPk(u,v) = min ( SPk-1(u,v), minw {SPk-1(u,w) + SP1(w,v)}) 
! This is our recurrence relation
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Toward APSP
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SPk(i,j) = lij(i,j)

Extend SP to 
use one extra 

edge.
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APSP Algorithm

4/9/19

!10

O(n4) time complexity
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APSP Algorithm – Matrix Mult
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Intermediate Matrices …
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Improved Idea
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O(n3log n) time complexity
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Repeating Squaring Idea
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Floyd-Warshall’s Algorithm

! SPk(u,v), shortest 
paths between u and 
v that use at most k 
edges 

! Old definition

! SPk(u,v), shortest paths 
between u and v that 
uses intermediate 
vertices from {1,2,…,k} 

! New definition
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Recurrence Relation

! Old Relation  
! SPk(u,v) = min ( SPk-1(u,v), minw {SPk-1(u,w) + 

SP1(w,v)}) 

! New Relation 
! SPk(u,v) = min ( SPk-1(u,v), SPk-1(u,k) + SPk-1(k,v)})
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Floyd-Warshall: Improved APSP
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O(n3) time complexity
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Figure 14.38 
Worst-case running times of various graph algorithms
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