
CAP 5510 / CGS 5166

COT 5407: Introduction 
to Algorithms
Giri NARASIMHAN 

www.cs.fiu.edu/~giri/teach/5407S19.html 
4/9/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html


CAP 5510 / CGS 5166

Correctness of Dijkstra’s Alg

4/9/19

!2



CAP 5510 / CGS 5166

Analysis of Dijkstra’s Algorithm

! O(n) calls to INSERT, EXTRACT-MIN 
! O(m) calls to DECREASE-KEY

4/9/19

!3

Approach Insert Dec-Key Extract-Min Total

PQ in Arrays O(1) O(1) O(n) O(n2)

Heaps O(log n) O(log n) O(log n) O((m+n)log n)

Fibonacci Heaps O(1)* O(1)* O(log n)* O(m + n log n)*

* Amortized Time Complexity



CAP 5510 / CGS 5166

SSSP Algorithms

! Dijkstra’s algorithm (only non-negative edges 
allowed) 
! Best: O(m + n log n) 

! Bellman-Ford algorithm (allows non-negative 
edges, but less efficient) 
! Repeated RELAX steps until we have answers 
! O(mn) time complexity

4/9/19

!4



COT 5407 2/23/17

!5 All Pairs Shortest Path Algorithm

Need to find shortest paths (or length) between 
every pair of vertices 
! Invoke Dijkstra’s SSSP algorithm n times. 
! Or an alternative approach …



CAP 5510 / CGS 5166

Structure of a Shortest Path

! Optimal substructure property 
! Every subpath of a shortest path is “optimal”, i.e., 

it is a shortest path between the relevant vertices.  
! Can we use DP?  

! Invent appropriate subproblems to cast it as a DP

4/9/19

!6



CAP 5510 / CGS 5166

Idea!

! In iteration k, find SPk(u,v), shortest paths 
between u and v that use at most k edges 

! Iteration 1: find all shortest paths that use at 
most 1 edge 
! Every edge (u,v) is a SP between u and v 
! Every non-edge (u,v) means no SP exists between u 

and v using at most one edge

4/9/19

!7



CAP 5510 / CGS 5166

Iteration k

! We already have SPk-1(u,v) from iteration k-1 
! If path of length k between u & v exists, then path 

of length k-1 exists between u and a neighbor of v 
! SPk(u,v) can be computed as follows: 

! SPk(u,v) = min ( SPk-1(u,v), minw {SPk-1(u,w) + SP1(w,v)}) 
! This is our recurrence relation

4/9/19

!8



CAP 5510 / CGS 5166

Toward APSP

4/9/19

!9

SPk(i,j) = lij(i,j)

Extend SP to 
use one extra 

edge.



CAP 5510 / CGS 5166

APSP Algorithm

4/9/19

!10

O(n4) time complexity



CAP 5510 / CGS 5166

APSP Algorithm – Matrix Mult

4/9/19

!11



CAP 5510 / CGS 5166

Intermediate Matrices …

4/9/19

!12



CAP 5510 / CGS 5166

Improved Idea

4/9/19

!13

O(n3log n) time complexity



CAP 5510 / CGS 5166

Repeating Squaring Idea

4/9/19

!14



CAP 5510 / CGS 5166

Floyd-Warshall’s Algorithm

! SPk(u,v), shortest 
paths between u and 
v that use at most k 
edges 

! Old definition

! SPk(u,v), shortest paths 
between u and v that 
uses intermediate 
vertices from {1,2,…,k} 

! New definition

4/9/19

!15



CAP 5510 / CGS 5166

Recurrence Relation

! Old Relation  
! SPk(u,v) = min ( SPk-1(u,v), minw {SPk-1(u,w) + 

SP1(w,v)}) 

! New Relation 
! SPk(u,v) = min ( SPk-1(u,v), SPk-1(u,k) + SPk-1(k,v)})

4/9/19

!16



CAP 5510 / CGS 5166

Floyd-Warshall: Improved APSP

4/9/19

!17

O(n3) time complexity



COT 5407 2/23/17

!18



COT 5407 2/23/17

!19

Figure 14.38 
Worst-case running times of various graph algorithms

Data Structures & Problem Solving using JAVA/2E       Mark Allen Weiss      © 2002  Addison Wesley


