COT 5407: Introduction to Algorithms Giri NARASIMHAN

 www.cs.fiu.edu/~giri/teach/5407S19.html
2. Analysis of Dijkstra's Algorithm

- O(n) calls to INSERT, EXTRACT-MIN - O(m) calls to DECREASE-KEY

Approach	Insert	Dec-Key	Extract-Min	Total
PQ in Arrays	$O(1)$	$O(1)$	$O(n)$	$O\left(n^{2}\right)$
Heaps	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O((m+n) \log n)$
Fibonacci Heaps	$O(1)^{*}$	$O(1)^{*}$	$O(\log n)^{*}$	$O(m+n \log n)^{*}$

Floyd-Warshall's Algorithm

- $\mathbf{S P}_{\mathrm{k}}(\mathrm{u}, \mathrm{v})$, shortest paths between u and v that use at most k edges
- Old definition
- $\mathbf{S P}_{\mathrm{k}}(\mathrm{U}, \mathrm{v})$, shortest paths between u and v that uses intermediate vertices from $\{1,2, \ldots, k\}$
- New definition

Recurrence Relation

- Old Relation
- $S P_{k}(\mathrm{U}, \mathrm{V})=\min \left(S P_{\mathrm{k}-1}(\mathrm{u}, \mathrm{V}), \min _{\mathrm{w}}\left\{S \mathrm{P}_{\mathrm{k}-1}(\mathrm{U}, \mathrm{W})+\right.\right.$ $\left.\left.S P_{1}(w, v)\right\}\right)$
- New Relation
- $\left.\mathrm{SP}_{\mathrm{k}}(\mathrm{U}, \mathrm{V})=\min \left(S P_{\mathrm{k}-1}(\mathrm{u}, \mathrm{v}), \mathrm{SP}_{\mathrm{k}-1}(\mathrm{u}, \mathrm{k})+S \mathrm{P}_{\mathrm{k}-1}(\mathrm{k}, \mathrm{v})\right\}\right)$

5
 Floyd-Warshall: Improved APSP

Floyd-Warshall (W)
$1 \quad n=W$.rows
$\mathrm{O}\left(\mathrm{n}^{3}\right)$ time complexity
$2 D^{(0)}=W$
3 for $k=1$ to n
$4 \quad$ let $D^{(k)}=d_{i j}^{(k)}$ be a new $n \quad n$ matrix
$5 \quad$ for $i=1$ to n

$$
\text { for } j=1 \text { to } n
$$

$\left.7 \quad d_{i j}^{(k)}=\min d_{i j}^{(k} \quad{ }^{1)}, d_{i k}^{(k}{ }^{1)}+d_{k j}^{(k} \quad 1\right)$
8 return $D^{(n)}$

$$
\begin{aligned}
& D^{(0)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(0)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL } & \text { NIL } \\
4 & \text { NIL } & 4 & \text { NIL } & \text { NIL } \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
& D^{(1)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(1)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL } & \text { NIL } \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
& D^{(2)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(2)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & 2 & 2 \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
& D^{(3)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(3)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & 2 & 2 \\
4 & 3 & 4 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
& D^{(4)}=\left(\begin{array}{rrrrr}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \dot{\Pi}^{(4)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 4 & 2 & 1 \\
4 & \text { NIL } & 4 & 2 & 1 \\
4 & 3 & \text { NIL } & 2 & 1 \\
4 & 3 & 4 & \text { NIL. } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right) \\
& D^{(S)}=\left(\begin{array}{rrrrr}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \Pi^{(5)}=\left(\begin{array}{ccccc}
\text { NIL } & 3 & 4 & 5 & 1 \\
4 & \text { NIL } & 4 & 2 & 1 \\
4 & 3 & \text { NIL } & 2 & 1 \\
4 & 3 & 4 & \text { NLL } & 1 \\
4 & 3 & 4 & 5 & \text { NII }
\end{array}\right)
\end{aligned}
$$

Figure 25.4 The sequence of matrices $D^{(k)}$ and $\Pi^{(k)}$ computed by the Floyd-Warshail algorithm

Figure 14.38
Worst-case running times of various graph algorithms

TYPE OF GRapH Problem	RUNNING TIME	COMMENTS
Unweighted	$O(\|E\|)$	Breadth-first search
Weighted, no negative edges	$O(\|E\| \log \|V\|)$	Dijkstra's algorithm
Weighted, negative edges	$O(\|E\| \cdot\|V\|)$	Belman-Ford algorithm
Weighted, acyclic	$O(\|E\|)$	Uses topological sort

NP-Completeness

Polynomial-time computations

- An algorithm has time complexity $O(T(n))$ if it runs in time at most $\mathrm{cT}(\mathrm{n})$ for every input of length n .
- An algorithm is a polynomial-time algorithm if its time complexity is $O(p(n))$, where $p(n)$ is polynomial in n .

10 Polynomials

- If $f(n)=p o l y n o m i a l ~ f u n c t i o n ~ i n ~ n, ~$ then $f(n)=O\left(n^{c}\right)$, for some fixed constant c
- If $f(n)=$ exponential (super-poly) function in n, then $f(n)=\omega\left(n^{c}\right)$, for any constant c
- Composition of polynomial functions are also polynomial, i.e., $f(g(n))=$ polynomial if $f()$ and $g()$ are polynomial
- If an algorithm calls another polynomial-time subroutine a polynomial number of times, then the time complexity is polynomial.
- A problem is in \mathcal{P} if there exists a polynomial-time algorithm that solves the problem.
- Examples of $\not P$
- DFS: Linear-time algorithm exists
- Sorting: O(n log n)-time algorithm exists
- Bubble Sort: Quadratic-time algorithm O(n²)
- APSP: Cubic-time algorithm O(n³)
- \boldsymbol{P} is therefore a class of problems (not algorithms)!

The class in

- A problem is in NP if there exists a non-deterministic polynomial-time algorithm that solves the problem.
- A problem is in VP if there exists a (deterministic) polynomial-time algorithm that verifies a solution to the problem.
- All problems that are in P are also in $V P$
- All problems that are in VP may not be in P

TSP: Traveling Salesperson Problem

- Input:
- Weighted graph, G
- Length bound, B
- Output:
- Is there a traveling salesperson tour in G of length at most B ?

Is TSP in YP?

- YES. Easy to verify a given solution.
- Is TSP in P?
- OPEN!
- One of the greatest unsolved problems of this century!
- Same as asking: Is $P=V Q P$?

So, what is NP-Camplete?

- VP-Camplete problems are the "hardest" problems in KP.

We need to formalize the notion of "hardest".

${ }^{15}$ Terminology

- Problem:
- An abstract problem is a function (relation) from a set I of instances of the problem to a set S of solutions.

$$
p: I \rightarrow s
$$

- An instance of a problem p is obtained by assigning values to the parameters of the abstract problem.
- Thus, describing set of all instances (l.e., possible inputs) and set of corresponding outputs defines a problem.
- Algorithm:
- An algorithm that solves problem p must give correct solutions to all instances of the problem.
Esser Polynomial-time algorithm:

${ }^{16}$ Terminology (Cont'd)

- Input Length:
- length of an encoding of an instance of the problem.
- Time and space complexities are written in terms of it.
- Worst-case time/space complexity of an algorithm
- Is the maximum time/space required by the algorithm on any input of length n .
Worst-case time/space complexity of a problem
- UPPER BOUND: worst-case time complexity of best existing algorithm that solves the problem.
- LOWER BOUND: (provable) worst-case time complexity of best algorithm (need not exist) that could solve the problem.
- LOWER BOUND \leq UPPER BOUND
- Complexity Class P :
- Set of all problems p for which polynomial-time algorithms exist

Terminology (Cont'd)

17 Decision Problems:

- These are problems for which the solution set is \{yes, no\}
- Example: Does a given graph have an odd cycle?
- Example: Does a given weighted graph have a TSP tour of length at most B?
- Complement of a decision problem:
- These are problems for which the solution is "complemented".
- Example: Does a given graph NOT have an odd cycle?
- Example: Is every TSP tour of a given weighted graph of length greater than B?

Optimization Problems:

- These are problems where one is maximizing (or minimizing) some objective function.
- Example: Given a weighted graph, find a MST.
- Example: Given a weighted graph, find an optimal TSP tour.
- Verification Algorithms:
- Given a problem instance i and a certificate s, is s a solution for instance i?

Terminology (Cont'd)

- Complexity Class P :
- Set of all problems p for which polynomial-time algorithms exist.
- Complexity Class VP:
- Set of all problems p for which polynomial-time verification algorithms exist.
- Complexity Class ca-VP:
- Set of all problems p for which polynomial-time verification algorithms exist for their complements, i.e., their complements are in 2 N .

Terminology (Cont'd)

- Reductions: $p_{1} \rightarrow p_{2}$
- A problem p_{1} is reducible to p_{2}, if there exists an algorithm R that takes an instance i_{1} of p_{1} and outputs an instance i_{2} of p_{2}, with the constraint that the solution for i_{1} is YES if and only if the solution for i_{2} is YES.
- Thus, R converts YES (NO) instances of p_{1} to YES (NO) instances of p_{2}.
p_{2}
- R. If $p_{1} \xrightarrow{p} p_{2}$, then
-If p_{2} is easy, then so is p_{1}.
-If p_{1} is hard, then so is p_{2}.

$$
\begin{aligned}
& p_{2} \in \mathcal{P} \Rightarrow p_{1} \in P \\
& p_{1} \notin P \Rightarrow p_{2} \notin P
\end{aligned}
$$

What are $2 \mathbb{T}$-Complete problems?

- These are the hardest problems in NP.
- A problem p is NP-Complete if
- there is a polynomial-time reduction from every problem in VP to p.
- $p \in \tau 卩$
- How to prove that a problem is NP-Complete?
- Cook's Theorem: [1972]
-The SAT problem is VP-Complete.
Steve Cook, Richard Karp, Leonid Levin
- A problem p is VP-Complete if
- there is a polynomial-time reduction from every problem in VP to p.
- $p \in \pi p$
- A problem p is NP-Hard if
- there is a polynomial-time reduction from every problem in VP to p.

The SAT Problem: an example

- Consider the boolean expression:
$C=(a \vee \neg b \vee c) \wedge(\neg a \vee d \vee \neg e) \wedge(a \vee \neg d \vee \neg c)$
- Is C satisfiable?
- Does there exist a True/False assignments to the boolean variables a, b, c, d, e, such that C is True?
Set $a=$ True and $d=$ True. The others can be set arbitrarily, and C will be true.
- If C has 40,000 variables and 4 million clauses, then it becomes hard to test this.
- If there are n boolean variables, then there are 2^{n} different truth value assignments.
- However, a solution can be quickly verified!

The SAT (Satisfiability) Problem

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses.
- Question: Is C satisfiable?
- Let $C_{y_{1}}=C_{1} \wedge C_{2}^{y_{2} \wedge} \wedge . . y_{k} C_{m}$
- Where each $\mathrm{C}_{\mathrm{i}}=$
- And each $\in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.
- Steve Cook showed that the problem of deciding whether a non-deterministic furing machine Taccepts an input w or not can be written as a boolean expression C_{T} for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of T and w.
- How to now prove Cook's theorem? Is SAT in VP?
- Can every problem in vp be poly. reduced to it?

The problem classes and their relationships

3SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1} \vee y_{2} \vee y_{3}\right)$
- And each $y_{j \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}}$
- We want to know if there exists a truth assignment to all the variables in the hoolean exnression C that makes it true.

More NP-Complete problems?
2SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
- Let $C=C_{1} y_{j} C_{2} \wedge \ldots \wedge C_{m}$
- Where each $\mathrm{C}_{\mathrm{i}}=$
- And each $\in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n}, \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

3SAT is VR-Complete

- 3SAT is in VR.
- SAT can be reduced in polynomial time to 3SAT.
- This implies that every problem in $2 \mathcal{T}$ can be reduced in polynomial time to 3SAT. Therefore, 3SAT is vp-Camplete.
- So, we have to design an algorithm such that:
- Input: an instance C of SAT
- Output: an instance C' of 3SAT such that satisfiability is retained. In other words, C is satisfiable if and only if C^{\prime} is satisfiable.
- Let C be an instance of SAT with clauses $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{m}}$
- Let C_{i} be a disjunction of $k>3$ literals.

$$
C_{i}=y_{1} \vee y_{2} \vee \ldots \vee y_{k}
$$

- Rewrite C_{i} as follows:

$$
\begin{aligned}
\mathbf{C}_{i}^{\prime}= & \left(y_{1} \vee y_{2} \vee z_{1}\right) \wedge \\
& \left(\neg z_{1} \vee y_{3} \vee z_{2}\right) \wedge \\
& \left(\neg z_{2} \vee y_{4} \vee z_{3}\right) \wedge \\
& \ldots \\
& \left(\neg z_{k-3} \vee y_{k-1} \vee y_{k}\right)
\end{aligned}
$$

- Claim: C_{i} is satisfiable if and only if C_{i}^{\prime} is satisfiable.

2SAT is in P

- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
- How? Homework problem!

The CLIQUE Problem

- A clique is a completely connected subgraph.

Figare 22.10 The articuiation points, bridges, and bizonneced componens of a comnected, undirected gruph for us in Pmhlem 22-2. The articulation points are the heavily shaled verices, the bridges are he heavily shaded edges, ard the ticonnected components are the edges in the shadxd regions, with a boc numbering shown.

CLIQUE

- Input: Graph G(V,E) and integer k
- Question: Does G have a clique of size k?

CLIQUE is 2 TP-Complete

- CLIQUE is in vp.
- Reduce 3SAT to CLIQUE in polynomial time.
- $F=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)\left(x_{2} \vee x_{3} \vee \neg x_{4}\right)\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$

F is satisfiable if and only if G has a clique of size k where k is the number of clauses in F.

A vertex cover is a set of vertices that "covers" all the edges of the graph.

Examples

Vertex Cover (VC)

Input: Graph G, integer k
Question: Does \mathbf{G} contain a vertex cover of size k?

- VC is in VR.
- polynomial-time reduction from CLIQUE to VC.

Thus VC is Vip-Complete.

Claim: \mathcal{G}^{\prime} has a clique of size k ' if and only if G has a

Hamiltonian Cycle Problem (HCP)

Input: Graph G
Question: Does G contain a hamiltonian cycle?

- HCP is in VR.
- There exists a polynomial-time reduction from 3SAT to HCP.

Thus HCP is VP-Complete.

Notes/animations by a former student, Yi Ge!
https://users.cs.fiu.edu/~giri/teach/UoM/7713/f98/yige/yi12.html

