COT 5407: Introduction to Algorithms Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407\$19.html

CAP 5510 / CGS 5166 4/16/19

Polynomial-time computations

- An algorithm has time complexity O(T(n)) if it runs in time at most cT(n) for every input of length n.
- An algorithm is a polynomial-time algorithm if its time complexity is O(p(n)), where p(n) is polynomial in n.

Polynomials

- If f(n) = polynomial function in n, then f(n) = O(n^c), for some fixed constant c
- If f(n) = exponential (super-poly) function in n, then $f(n) = \omega(n^c)$, for any constant c
- Composition of polynomial functions are also polynomial, i.e., f(g(n)) = polynomial if f() and g() are polynomial
- If an algorithm calls another polynomial-time subroutine a polynomial number of times, then the time complexity is polynomial.

The class P

- A problem is in p if there exists a polynomial-time algorithm that solves the problem.
- Examples of P
 - DFS: Linear-time algorithm exists
 - Sorting: O(n log n)-time algorithm exists
 - Bubble Sort: Quadratic-time algorithm O(n²)
 - APSP: Cubic-time algorithm O(n³)
- p is therefore a class of problems (not algorithms)!

The class m

- A problem is in \mathscr{H} if there exists a non-deterministic polynomial-time algorithm that solves the problem.
- A problem is in \mathcal{W} if there exists a (deterministic) polynomial-time algorithm that verifies a solution to the problem.
- ightharpoonup All problems that are in ho are also in ho
- \blacksquare All problems that are in \mathcal{TP} may not be in \mathcal{P}

TSP: Traveling Salesperson Problem

- Input:
 - Weighted graph, G
 - Length bound, B
- Output:
 - Is there a traveling salesperson tour in G of length at most B?
- Is TSP in WP?
 - YES. Easy to verify a given solution.
- Is TSP in P?
 - **OPEN!**
 - One of the greatest unsolved problems of this century!
 - Same as asking: $ls \mathcal{P} = \mathcal{NP}$?

So, what is MP-Complete?

- → MP Complete problems are the "hardest" problems in MP.
- We need to formalize the notion of "hardest".

Terminology

Problem:

An <u>abstract problem</u> is a function (relation) from a set I of instances of the problem to a set S of solutions.

$$p: I \rightarrow S$$

- An <u>instance</u> of a problem p is obtained by assigning values to the parameters of the abstract problem.
- Thus, describing set of all instances (I.e., possible inputs) and set of corresponding outputs defines a problem.

Algorithm:

An algorithm that solves problem p must give correct solutions to all instances of the problem.

Polynomial-time algorithm:

Terminology (Cont'd)

- Input Length:
 - length of an encoding of an instance of the problem.
 - Time and space complexities are written in terms of it.
- Worst-case time/space complexity of an algorithm
 - Is the maximum time/space required by the algorithm on any input of length n.
- Worst-case time/space complexity of a problem
 - UPPER BOUND: worst-case time complexity of best existing algorithm that solves the problem.
 - LOWER BOUND: (provable) worst-case time complexity of best algorithm (need not exist) that could solve the problem.
 - LOWER BOUND

 UPPER BOUND
- Complexity Class ?:
 - Set of all problems p for which polynomial-time algorithms exist

Terminology (Cont'd)

Decision Problems:

- These are problems for which the solution set is {yes, no}
- Example: Does a given graph have an odd cycle?
- Example: Does a given weighted graph have a TSP tour of length at most B?
- Complement of a decision problem:
 - These are problems for which the solution is "complemented".
 - Example: Does a given graph NOT have an odd cycle?
 - Example: Is every TSP tour of a given weighted graph of length greater than B?
- Optimization Problems:
 - These are problems where one is maximizing (or minimizing) some objective function.
 - Example: Given a weighted graph, find a MST.
 - Example: Given a weighted graph, find an optimal TSP tour.
- Verification Algorithms:
 - Given a problem instance i and a certificate s, is s a solution for instance i?

COT 5407 12/2/08

11

Terminology (Cont'd)

- Complexity Class P:
 - Set of all problems p for which polynomial-time algorithms exist.
- Complexity Class \(\mathcal{P} \):
 - Set of all problems p for which polynomial-time verification algorithms exist.
- Complexity Class co-NP:
 - Set of all problems p for which polynomial-time verification algorithms exist for their complements, i.e., their complements are in mp.

12

Terminology (Cont'd)

- ightharpoonup Reductions: $p_1 \rightarrow p_2$
 - A problem p_1 is reducible to p_2 , if there exists an algorithm R that takes an instance i_1 of p_1 and outputs an instance i_2 of p_2 , with the constraint that the solution for i_1 is YES if and only if the solution for i_2 is YES.
 - Thus, R converts YES (NO) instances of p₁ to YES (NO) instances of p₂.
- Polynomial-time reductions: p₁

What are MP-Complete problems?

- lacktriangle These are the hardest problems in \mathcal{NP} .
- ► A problem p is MP Complete if
 - there is a polynomial-time reduction from every problem in \(\mathcal{P} \) to p.
 - **p** ∈ *M*P
- How to prove that a problem is MP-Complete?
 - · Cook's Theorem: [1972]
 - -The <u>SAT</u> problem is MP-Complete.

NP-Complete VS NP-Hard

- A problem p is MP-Complete if
 - there is a polynomial-time reduction from <u>every</u> problem in to p.
 - **p** ∈ *m*
- A problem p is MP-Hard if
 - there is a polynomial-time reduction from <u>every</u> problem in to p.

The SAT Problem: an example

Consider the boolean expression:

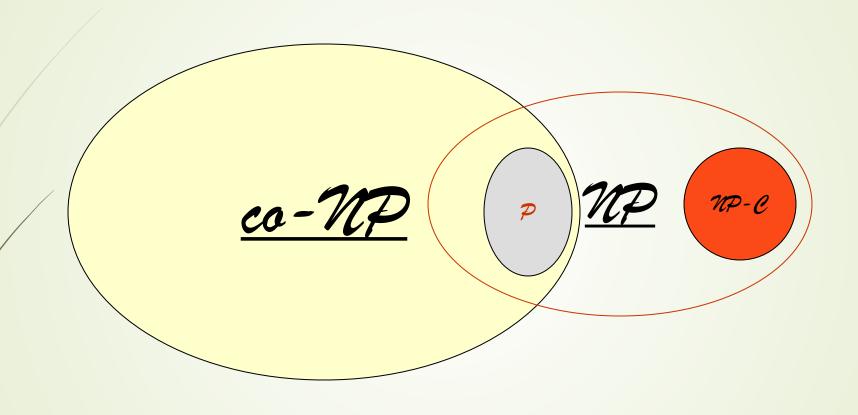
```
C = (a \lor \neg b \lor c) \land (\neg a \lor d \lor \neg e) \land (a \lor \neg d \lor \neg c)
```

- Is C satisfiable?
- Does there exist a True/False assignments to the boolean variables a, b, c, d, e, such that C is True?
- Set a = True and d = True. The others can be set arbitrarily, and C will be true.
- If C has 40,000 variables and 4 million clauses, then it becomes hard to test this.
- If there are n boolean variables, then there are 2ⁿ different truth value assignments.
- However, a solution can be quickly verified!

The SAT (Satisfiability) Problem

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses.
- Question: Is C satisfiable?
 - Let $C = C_1 \wedge C_2 \wedge ... \wedge C_m$ Where each $C_i = (y_1 \vee y_2 \vee L \vee y_k)$
 - ► And each $\in \{x_1, \neg x_1, x_2, \neg x_2, ..., x_n, \neg x_n\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.
- Steve Cook showed that the problem of deciding whether a non-deterministic Turing machine T accepts an input w or not can be written as a boolean expression C_T for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of T and w.
 - · How to now prove Cook's theorem? Is SAT in mp?
 - Can every problem in poly. reduced to it?

The problem classes and their relationships



More NP - Complete problems

3SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
 - ► Let $C = C_1 \wedge C_2 \wedge \dots \wedge C_m$
 - Where each $C_i = (y_1^i \vee y_2^i \vee y_3^i)$
 - ► And each $y \in \{x_1, \neg x_1, x_2, \neg x_2, ..., x_n, \neg x_n\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

COT 5407

35AT is MP-Complete.

More MP - Complete problems?

2SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
 - Let $C = C_1 \mathcal{Y}_j C_2 \wedge ... \wedge C_m$ Where each $C_i = (y_1^i \vee y_2^i)$

 - **►** And each $\in \{x_1, \neg x_1, x_2, \neg x_2, ..., x_n, \neg x_n\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

3SAT is MP-Complete

- 3SAT is in 77.
- SAT can be reduced in polynomial time to 3SAT.
- This implies that every problem in

 polynomial time to 3SAT. Therefore, 3SAT is

 P-Complete.
- So, we have to design an algorithm such that:
- Input: an instance C of SAT
- Output: an instance C' of 3SAT such that satisfiability is retained. In other words, C is satisfiable if and only if C' is satisfiable.

21

3SAT is NP-Complete

- Let C be an instance of SAT with clauses C₁, C₂, ..., C_m
- Let C_i be a disjunction of k > 3 literals.

$$C_i = y_1 \vee y_2 \vee ... \vee y_k$$

Rewrite C_i as follows:

$$C'_{i} = (y_{1} \vee y_{2} \vee z_{1}) \wedge (\neg z_{1} \vee y_{3} \vee z_{2}) \wedge (\neg z_{2} \vee y_{4} \vee z_{3}) \wedge (\neg z_{k-3} \vee y_{k-1} \vee y_{k})$$

Claim: C_i is satisfiable if and only if C'_i is satisfiable.

2SAT is in P

- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
- How? Homework problem!

The CLIQUE Problem

· A clique is a completely connected subgraph.

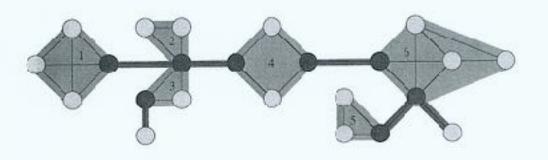


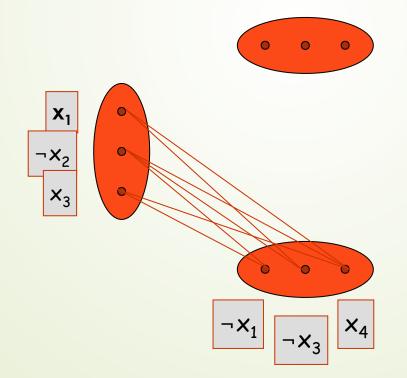
Figure 22.10 The articulation points, bridges, and biconnected components of a connected, undirected graph for use in Problem 22-2. The articulation points are the heavily shaded vertices, the bridges are the heavily shaded edges, and the biconnected components are the edges in the shaded regions, with a bcc numbering shown.

CLIQUE

- Input: Graph G(V,E) and integer k
- Question: Does G have a clique of size k? 12/2/08

CLIQUE is MP-Complete

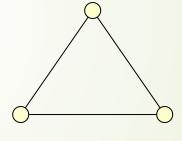
- CLIQUE is in MP.
- Reduce 3SAT to CLIQUE in polynomial time.

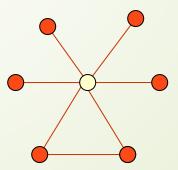


F is satisfiable if and only if G has a clique of size k where k is the number of clauses in F.

Vertex Cover

A vertex cover is a set of vertices that "covers" all the edges of the graph.



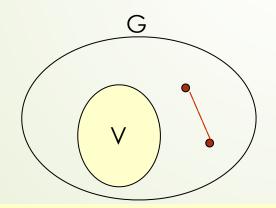


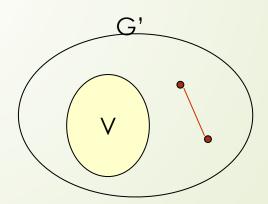
Vertex Cover (VC)

Input: Graph G, integer k

Question: Does G contain a vertex cover of size k?

- ► VC is in \mathcal{NP}.
- polynomial-time reduction from CLIQUE to VC.
- Thus VC is MP-Complete.





COT 5407

Claim: G' has a clique of size k' if and only if G has a VC of size k = n - k'

Hamiltonian Cycle Problem (HCP)

Input: Graph G

Question: Does G contain a hamiltonian cycle?

- ► HCP is in \mathcal{W} .
- There exists a polynomial-time reduction from 3SAT to HCP.
- ► Thus HCP is MP-Complete.

- Notes/animations by a former student, Yi Ge!
 - https://users.cs.fiu.edu/~giri/teach/UoM/7713/f98/yige/yi12.html