Fall 2018:
Introduction to
Data Science
GIRI NARASIMHAN, SCIS, FIU

Similarity

- Fundamental problem in Data Science
- Web pages
- Documents
- Customer/User profiles (Collaborative Filtering)
- Complaint histories
- Disease profiles
- Detecting Plagiarism

Jaccard Similarity

- Defined on 2 sets, S and T
- E.g., Documents and Web pages can be thought of as set of words
- Bag Similarity uses bags instead of sets

Figure 3.1: Two sets with Jaccard similarity $3 / 8$

Applications of Jaccard Similarity

- Detecting Plagiarism
- Detecting Mirror pages
- Detecting same source articles - used by news aggregators
- Collaborative filtering users recommended items liked by users with similar tastes
- Online purchases
- Movie ratings

Shingling of Documents

- k-Shingles
- Any substring of a document of length K
- Example: If document D is abcdabd then the set of 2 -shingles $=\{a b, b c$, cd, da, bd\}
- Since for large k, not all possible k singles will be found, hashing is often used
- Compacted sets of shingles are called signatures
- Matrix Representations

Picking k for Shingling

- If k is too small, then almost all documents will be similar
- If k is too large, it can miss small common phrases
- Large k is needed for large docs
- For large k, hashing is used
- Emails: k=5
- Larger documents: $\mathrm{k}=9$

Shingles from Words

- For news items, choose shingle as: a stop word and next 2 words

Shingles set size

- Can be large and can be roughly 4 times original document if each hash can be stored in 4 bytes.
- Need to replace large sets by small signatures
- Next we discuss how to construct small signatures

Characteristic Matrix

- To create small signatures, we imagine the Characteristic Matrix
- Characteristic Matrix: way to visualize a Set of sets and their Elements
- Rows - Elements
- Columns - Sets of elements
- Matrix - 0/1 values
- Matrix is assumed to be sparse

Element	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Small Signatures and MinHash

- Permute the rows
- Minhash $\left(S_{i}\right)=$ row number of the first 1 in column S_{i}
- Minhash of the 4 columns are:
- (ac, b, a)
- $\operatorname{Pr}\left\{\right.$ Minhash $\left.\left(S_{i}\right)=\operatorname{Minhash}\left(S_{j}\right)\right\}$ equals
- Jaccard similarity SIM ($\left.\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right)$
- MinhashSignature $\left(S_{i}\right)=$ result from N perm
- Say N = 100

Element	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
b	0	0	1	0
e	0	0	1	0
a	1	0	0	1
d	1	0	1	1
c	0	1	0	1

Computing Minhash Signatures

- Permuting a large characteristic matrix is too expensive
- Simulate permutations using hashing
- It is a close approximation, except for collisions
- Ignore collisions, which cause errors in the computation
- Sparsity helps in lowering the errors
- Instead of N permutations, we pick N hash functions
- $h_{1}, h_{2}, \ldots, h_{N}$

Computing Minhash Signatures

- Given hash function $h_{1}, h_{2}, \ldots, h_{N}$, we want to compute MinHash values
- Let $\operatorname{SIG}(k, c)=$ signature matrix for k-th hash function and column c
- For row r, compute $h_{1}(r), h_{2}(r), \ldots, h_{N}(r)$
- If col chas 0 in row r, do nothing
- Else, for each $k=1,2, \ldots, N$, a $\operatorname{set} \operatorname{SIG}(k, c)=\min \left\{S I G(k, c), h_{k}(r)\right\}$
- Initialize all SIG values to infty

Row	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{x}+1 \bmod 5$	$3 \mathrm{x}+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
$\mathrm{~h}_{1}$	∞	∞	∞	∞
$\mathrm{~h}_{2}$	∞	∞	∞	∞

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
$\mathrm{~h}_{1}$	1	∞	∞	1
$\mathrm{~h}_{2}$	1	∞	∞	1

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
$\mathrm{~h}_{1}$	1	∞	2	1
$\mathrm{~h}_{2}$	1	∞	4	1

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
$\mathrm{~h}_{1}$	1	3	2	1
$\mathrm{~h}_{2}$	1	2	4	1

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
$\mathrm{~h}_{1}$	1	3	2	1
$\mathrm{~h}_{2}$	0	2	0	0

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
$\mathrm{~h}_{1}$	1	3	0	1
$\mathrm{~h}_{2}$	0	2	0	0

Pair	True SIM	Approx SIM
$(1,2)$	0	0
$(1,4)$	$2 / 3$	1
$(3,4)$	$1 / 5$	$1 / 2$

Row	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{x}+1 \bmod 5$	$3 \mathrm{x}+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Minhash Overview

- Takes very large documents and computes small signatures such that
- Jaccard Similarity is retained
- Example: 1 M docs, $\mathrm{N}=250$ hash functions; 4 bytes per hash value
- 1KB per doc signature
- 1 GB to store all signatures
- 0.5 Trillion pairs of docs
- Similarity computation $=1$ microsec
- To compute all pairs $=\sim 6$ days ($=0.5184$ trillion microsecs)

Find Closest Pair of Documents

- Cannot wait 6 days for an answer
- Clustering algorithms need this repeatedly
- Approach: Use a special hash function
- Hash items so that similar items are likely to end up in the same bucket.
- Avoid pairs in different buckets \& reduce number of pairs to inspect
- These hash functions are called Locality Sensitive Hashing (LSH)
- Small Prob of error due to hashing
- False Positives (cause extra work) and False Negatives (miss good pairs)

LSH for MinHash

- Divide signature matrix into b bands of r rows each
- For each band, hash column vector of r items to large \# of buckets
- Use same hash function for each band but use separate buckets
- Use different sets of buckets for different bands
- Any pair that appears in the same bucket in any band becomes a candidate for further inspection. All other pairs are discarded.
- If 2 columns are similar, then they must be identical in at least 1 band
- Each pair gets b chances to be in the same bucket

Analysis of LSH with Banding

- Assume b bands and r rows
- Consider a pair of docs with similarity value s
- Prob that their Minhash signatures agree in any particular row $=s$
- We want prob that this pair of docs becomes a candidate
- Prob signatures agree in all rows of one band $=s^{r}$
- Prob signature disagrees in at least one row of a band $=1-s^{r}$
- Prob signatures disagree in at least one row in each band $=\left(1-\mathrm{s}^{\mathrm{r}}\right)^{\mathrm{b}}$
- Prob that signatures agree in all rows of at least one band $=1-\left(1-s^{r}\right)^{\text {b }}$

Behavior of $1-(1-\text {-s })^{b}$

- Independent of \mathbf{b} and \mathbf{r}
- Curve has to get from $(0,0)$ to $(1,1)$
- It's always an S-curve
- Threshold = value of s at steep rise
a > threshold, pair is likely a candidate
- Set (b,r) to achieve desired threshold

LSH-based Algorithm for Similar Items

- Pick k and construct k-shingles from each document
- Pick \dagger, b, and $r\left(t \sim(1 / b)^{1 / r}\right)$
- Pick $\mathrm{n}=$ br hash functions
- Apply LSH technique, find candidates, check true similarity

Distance Measures

- A distance measure D must satisfy the following properties
- Non-negativity: $D(x, y)>=0$
- $D(x, y)=0$ if and only if $x=y$
- Symmetry: $D(x, y)=D(y, x)$
- Triangle Inequality: $D(x, y)<=D(x, z)+D(z, y)$

Important Distance Measures

- $D([x 1, \ldots, x n],[y 1, \ldots, y n])=(|x|-y| | r+\ldots+|x n-y n| r)^{1 / r}$
- If $r=2$, this is the standard Euclidean distance
- Other values are commonly referred to as Euclidean norms
- Jaccard Distance = 1 - Jaccard Similarity
- Cosine Distance $=$ Dot Product of 2 vectors
- Edit Distance = measure of changes to turn \mathbf{x} into \mathbf{y}
- Hamming Distance = \# of components in which 2 vectors differ

Finding Identical Items

- LSH works for items with low similarity
- What if we only want to find identical items
- Not good just to look at say first few characters
- Not good to compare entire documents to check
- Even if we hashed, we would need too many buckets
- Idea: Compute hash value based on random positions

Finding near-identical items

- Advanced topic - please read from text.

