Introduction to Data Science GIRI NARASIMHAN, SCIS, FIU

APRIORI Algorithm

Frequent Itemses (MinSup 20\%)
Almonds, Beer, Cheese, Dogfood, Eggs, Fruit, Gree

TID	A	B	C	D	E	F	G
1	1	1		1			1
2			1	1	1		
3		1	1			1	
4		1				1	
5			1		1		1
6						1	
7	1		1	1			
8						1	
9			1		1		
10		1					1
11			1		1		1
12	1						
13			1			1	
14	1		1	1		1	
15							
16				1			
17	1		1			1	
18	1	1	1	1			
19	1	1	1	1			1
20					1		

APRIORI Algorithm

Frequent Itemsets
(MinSup 20\%)
Almonds, Beer, Cheese, Dogfood, Eggs, Fruit, Greens

TID	A	B	C	D	E	F	G
1	1	1		1			1
2			1	1	1		
3		1	1			1	
4		1				1	
5			1		1		1
6						1	
7	1		1	1			
8						1	
9			1		1		
10		1					1
11			1		1		1
12	1						
13			1			1	
14	1		1	1		1	
15							
16				1			
17	1		1			1	
18	1	1	1	1			
19	1	1	1	1			${ }^{1}$
20					1		

Central Observation: If a set X of items is frequent, then so is every subset of X.

Monotonicity Property

Implication of Monotonicity

- Example: If \{beer, cheese\} is not frequent, then no need to consider set \{beer, cheese, dogfood\}
- We don't have to consider any sets with an infrequent subset
- We consider subsets in the order of increasing size and all of whose subsets are frequent
- Once a subset is eliminated, all its supersets are removed from consideration

APRIORI Algorithm

Frequent Itemsets (MinSup 20\%)
Almonds, Beer, Cheese, Dogfood, Eggs, Fruit, Greens

TID	A	B	C	D	E	F	G
1	1	1		1			1
2			1	1	1		
3		1	1			1	
4		1				1	
5			1		1		1
6						1	
7	1		1	1			
8						1	
9			1		1		
10		1					1
11			1		1		1
12	1						
13			1			1	
14	1		1	1		1	
15							
16				1			
17	1		1			1	
18	1	1	1	1			
19	1	1	1	1			1
20					1		

Iteration 1

- Find all frequent subsets of size 1
- It turns out that all subsets of size 1 are frequent with support 20%
- $L_{1}=\{\{A\},\{B\},\{C\},\{D\},\{E\},\{F\},\{G\}\}$

Iteration 2

- Generate all possible subsets of size 2 from L_{1}
- $C_{2}=\{\{a, b\},\{a, c\},\{a, d\},\{a, e\},\{a, f\},\{a, g\},\{b, c\}$, $\{b, d\},\{b, e\},\{b, f\},\{b, g\},\{c, d\},\{c, e\},\{c, f\},\{c, g\}$, $\{d, e\},\{d, f\},\{d, g\},\{e, f\},\{e, g\},\{f, g\}\}$
- Identify those with minimum support of $\mathbf{2 0 \%}$
- $L_{2}=\{\{a, c\},\{a, d\},\{c, d\},\{c, e\},\{c, f\}\}$

Iteration 3

- Generate all possible subsets of size 3 from L_{2}
- Remember that $L_{2}=\{\{a, c\},\{a, d\},\{c, d\},\{c, e\},\{c, f\}\}$
- $C_{3}=\{\{a, c, d\},\{c, d, e\},\{c, d, f\},\{c, e, f\}\}$
\square We can prune $\{c, d, e\}$ since $\{d, e\}$ is not in $L 2$
- We can prune $\{c, d, f\}$ since $\{d, f\}$ is not in $L 2$
- We can prune $\{c, e, f\}$ since $\{e, f\}$ is not in $L 2$
- Identify remaining subsets with minimum support of $\mathbf{2 0 \%}$
- $L_{3}=\{\{a, c, d\}\}=\{\{a l m o n d s$, cheese, dogfood $\}$

Iteration 4

- Generate all possible subsets of size 4 from L_{3}
- Remember that $L_{3}=\{\{a, c, d\}\}$
- $C_{4}=\{ \}$
- $L_{4}=\{ \}$
- STOP!
- Only one frequent itemset: \{Almonds, Cheese, Dogfood\}

APRIORI Algorithm

Frequent Itemsets (MinSup 20\%)
Almonds, Beer, Cheese, Dogfood, Eggs, Fruit, Greens

TID	A	B	C	D	E	F	G
1	1	1		1			1
2			1	1	1		
3		1	1			1	
4		1				1	
5			1		1		1
6						1	
7	1		1	1			
8						1	
9			1		1		
10		1					1
11			1		1		1
12	1						
13			1			1	
14	1		1	1		1	
15							
16				1			
17	1		1			1	
18	1	1	1	1			
19	1	1	1	1			1
20					1		

Association Rule

- A useful rule is one that says, if you buy almonds and dogfood, then you are likely to buy cheese as well.
a "Diaper-Beer" rule
- Confidence: Confidence of an Association Rule is the percentage of applicable rules where the rule is true
- Rule: if X then Y
- Confidence: \#(X and Y) / \#(X)
- Confidence of "If almonds and dogfood, then cheese" is ?
- 80% or 0.8

APRIORI Algorithm

Frequent Itemsets (MinSup 20\%)
Almonds, Beer, Cheese, Dogfood, Eggs, Fruit, Greens

TID	A	B	C	D	E	F	G
1	1	1		1			1
2			1	1	1		
3		1	1			1	
4		1				1	
5			1		1		1
6						1	
7	1		1	1			
8						1	
9			1		1		
10		1					1
11			1		1		1
12	1						
13			1			1	
14	1		1	1		1	
15							
16				1			
17	1		1			1	
18	1	1	1	1			
19	1	1	1	1			1
20					1		

Other Applications

- Word Frequency Count
- Patterns in biomolecular sequences
- ...

Patterns

Loc	Protein Name	Helix 2									Turn				Helix 3								
		-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
14	Cro	F	G	Q	E	K	T	A	K	D	L	G	V	Y	Q	S	A	1	N	K	A	I	H
16	434 Cro	M	T	Q	T	E	L	A	T	K	A	G	V	K	Q	Q	S	I	Q	L	I	E	A
11	P22 Cro	G	T	Q	R	A	V	A	K	A	L	G	1	S	D	A	A	V	S	Q	W	K	E
31	Rep	L	S	Q	E	S	V	A	D	K	M	G	M	G	Q	S	G	V	G	A	L	F	N
16	434 Rep	L	N	Q	A	E	L	A	Q	K	V	G	T	T	Q	Q	S	I	E	Q	L	E	N
19	P22 Rep	I	R	Q	A	A	L	G	K	M	V	G	V	S	N	V	A	1	S	Q	W	E	R
24	CII	L	G	T	E	K	T	A	E	A	V	G	V	D	K	S	Q	I	S	R	W	K	R
4	LacR	V	T	L	Y	D	V	A	E	Y	A	G	V	S	Y	Q	T	V	S	R	V	V	N
167	CAP	I	T	R	Q	E	I	G	Q	I	V	G	C	S	R	E	T	V	G	R	1	L	K
66	TrpR	M	S	Q	R	E	L	K	N	E	L	G	A	G	I	A	T	I	T	R	G	S	N
22	BlaA Pv	L	N	F	T	K	A	A	L	E	L	Y	V	T	Q	G	A	V	S	Q	Q	V	R
23	TrpI Ps	N	S	V	S	Q	A	A	E	Q	L	H	V	T	H	G	A	V	S	R	Q	L	K

Q1 G9 N20
 - A5 G9 V10 I15

Candidates generation

