Causality

Bayesian Networks

Conditional Dependence

- Let A be an event
- Prob p(A) = fraction of instances recorded on which event A occurs
- Prob p(A | B) = fraction of instances recorded on which event A occurs, but counted only for those instances when B occurs

CAP 5510 / CGS 51(

Figure 1. Bayesian Network for Example of Car Diagnostics

Bayesian Networks

- More often than not, two variables are independent or conditionally independent.
- Helps to cut down edges in a network of dependencies

Conditional Dependence in BN

- Consider situation shown here:
- We expect p(A | B) = p(A), i.e., A is independent of B
- What happens if C occurs?
 - □ If B occurs, the p(A) decreases since it is less critical to explain occurrence of C
 - □ I.e., p(A | B,C) < p(A | C) & p(B | A,C) < p(B | C)

8

A

E.g. of Conditional dependence

	1	2	3	4
Α	0	1	0	1
В	0	0	1	1
С	0	1	1	1

•
$$p(A | B) = \frac{1}{2}; p(A) = \frac{2}{4} = \frac{1}{2};$$

Since p(A | B) = p(A), A is independent of B

•
$$p(A | B,C) = \frac{1}{2} < p(A | C) = \frac{2}{3};$$

10

Causality

Causality

- Correlation doesn't imply causation
- Examples: Drugs, Gene Regulatory
- Causal revolution in the last decade
- High impact in many domains
- Causality can shed light on Bioinformatics


```
Judea Pearl
```

12

Steps in Causal Inference

Causal Models

- Causal structure / Causal Bayesian network
- Casual parameters

Causal Effects

- Causal inference
- Quantification of the causal influence

Causal Bayesian Network

- A class of Bayesian networks
 - Directed Acyclic Graph (DAG)
 - Set of nodes, set of directed edges, no cycle
 - Nodes represent random variables
 - Edges represent conditional relationships

Joint Distribution

- = 0.00062
- $= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$
- $= P(J|A)P(M|A)P(A|\neg B,\neg E)P(\neg B)P(\neg E)$
- P(J&M&A&¬B&¬E)

Complex Inferencing

15

Alarm

Earthquake

John Calk

Burglary

Mary Calls

Causal Chains

This configuration is a causal chain

Common Cause

This configuration is a "common cause"

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

Common Effect

Two causes of one effect (v-structures)

X ⊥ Z
X ⊥ Z | Y

Example

 $\begin{array}{ll} R \bot B & \text{Yes} \\ R \bot B | T \\ R \bot B | T' \end{array}$

Example

$L \! \perp \! T' T$	Yes
$L \bot\!\!\!\!\perp B$	Yes
$L \bot\!\!\!\bot B T$	
$L \! \perp \! B T'$	
$L \! \perp \! \! \perp \! B T, R$	Yes

L

Example

- Variables:
 - R: Raining
 - **T**: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions: $T \perp D$
 - $T \bot\!\!\!\bot D | R \qquad Yes$ $T \bot\!\!\!\bot D | R, S$

