CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

Giri Narasimhan
 ECS 254; Phone: x3748 giri@cis.fiu.edu

www.cis.fiu.edu/~giri/teach/BioinfF18.html

More on NGS Assembly

Basic Assembler

Read: sequenced fragment; Contig: contiguous segment. How to assemble a contig?

TCGAGTTAAGCTTTAG
CGAGTTAAGCTTTAGC
AGTTAAGCTTTAGCCT GTTAAGCTTTAGCCTA

AGCTTTAGCCTAGGGC GCTTTAGCCTAGGCAG

> AGCTTTAGCCTAGGGC AGTTAAGCTTTAGCCT CGAGTTAAGCTTTAGC GCTTTAGCCTAGGCAG GTTAAGCTTTAGCCTA TAAGCTTTAGCCTAGG TCGAGTTAAGCTTTAG

Problem: Need to try every pair of reads!

Reduce to Graph Problem

How to assemble a contig?
Node \longrightarrow Read
Overlapping Reads

String graph

Combine nodes that form paths into strings

A better solution

\square Take each read and chop it into k-mers.
\square Represent k-mers by nodes in a graph and edges between k-mers that overlap in $k-1$ bases.
\square Consequence:
Number of nodes $=4 k$;
Number of edges $=k 4^{k}$;
IIssues:
Problem (i.e., find path through all vertices) remains NP-Complete

A more efficient solution: de Bruijn Graphs

\square Represent every possible ($k-1$)-mer by a node.
\square Edges connect 2 nodes if they share $k-2$ bases.
Label each edge by k-mer.
AGTTAAGC

Problem:
Find a path through each edge in the graph
\square The Eulerian path problem is NOT NP-Complete. It annhn anlund in linann timal
Pevzner, PA, I-tuple DNA sequencing: Computer analysis. Journal of Biomolecular Structure and Dynamics 7(1), 63-73, 1989.

Sources of Assembly Errors

Errors in reads - caused by technology
Werror in base calls, color calls (SOLID Technology), or repeated base calls (454 Technology)
Missing reads - sequencing bias
\square Read orientation error
One or both orientations may occur
Not told which ones are present
Sequence Variations - mixed sample study
MSNP, cancer, metagenomics studies
\square REPEATS
Combinations of the above

How to deal with REPEAT Regions

If no errors or repeat regions, then the graph has a unique path through all the edges.
The de Bruijn graph method quickly deteriorates with sequencing errors Either correct reads before assembly OR Correct de Bruijn graph for spurious edges
Problem: REPEAT regions cause branching in graph. If no errors in reads, then the graph has a unique path through all edges, but with some edges traversed more than once.
How to identify REPEAT regions:
Higher coverage of repeat regions
Branching of nodes

Sources of Assembly Errors

Errors in reads - caused by technology
Error in base calls, color calls (SOLID Technology), or repeated base calls (454 Technology)
Missing reads - sequencing bias

- Read orientation error

One or both orientations may occur
Mot told which ones are present

- Sequence Variations - mixed sample study

SNP, cancer, metagenomics studies

- Combinations of the above

Handling Read Error

GTAATGCCTCAATGCCGGAATGCA

CTGAA

Erroneous Base Call

Well conserved regions in related genomes

TGCCTCAA
TGCCTCAA

GTAATGCCTCAATGCCGGAATGCA
CTGAA

Issues and Ideas

Small k gives rise to many spurious edges
Large k makes the graph sparse
Start with k-mer graph or string graph or overlap graph or contig (Velvet) graph

Advantages/disadvantages of each?
Place highly conserved reads or regions on this graph
Identify missing nodes/edges/paths
\square Paired de Bruijn graphs incorporated paired reads directly into graph when the distance between the pairs are fixed
Pathset de Bruijn graphs do the same when distance between pairs are variable

P Positional de Bruijn graphs incorporate positional information about k-mers
Colored de Bruijn graphs are used to analyze genetic variants

When is a genome assembly done?

- Almost never perfectly! Great cost in time, effort, and money.

Currently 92% of human genome is done to 99.99% accuracy [Schmutz et al., Nature 429, 365-368]
More likely to complete with bacterial and viral genomes, but they evolve much faster.
Hard part with bacterial genomes are genomic rearrangements
Often enough to get gene content to perform comparative genomics

- Tools to compare gene content

CCEGMA - Eukaryote
CheckM - Bacterial; https://peerj.com/preprints/554.pdf

- Useful papers

Salzberg et al., Genome Res, 2012
Vezzi et al., PLoS ONE, 2012, DOI: 10.1371/journal.pone. 0031002
Gurevich et al., Bioinformatics, 29(8): 1072-75, 2013
Shengguan et al., PLoS ONE, 2013, DOI: 10.1371/journal.pone. 0069890

N50 measure

https://www.broad.harvard.edu/crd/wiki/index.php/N50
Statistical measure of "average length" of a set of sequences.
Used widely in evaluating assemblies.
N50 length is defined as the length N for which 50% of all bases in the sequences are in a sequence of length L < N.
N50 is a weighted median statistic such that 50% of entire assembly is contained in contigs or scaffolds equal to or larger than this value
Given list of lengths L. Create another list L' , which is identical to L, except that every element n in L has been replaced with n copies of itself. Then the median of L ' is the N 50 of L .
Example:
QLet $L=\{2,2,2,3,3,4,8,8\}$,
Q' consists of six 2 's, six 3 's, four 4 's, and sixteen 8 's; the $N 50$ of L is the median of L^{\prime}, which is 6 .
Alternatively, sum $=32$, halfSum $=16$. You need the two 8 's to sum up to 16

How much of a genome is unsequenced?

Assumption: fragments are independently and uniformly distributed across genome
QR = Depth of Coverage

- N = Genome length
\square Fraction of genome not sequenced is $\mathrm{Ne}^{-\mathrm{R}}$
- "Law of diminishing returns": doubling sequencing depth from R to $2 R$ reduces unsequenced portion of genome by a factor of e^{-R}

Lander, Waterman, "Genomic mapping by fingerprinting random clones: a mathematical analysis" Genomics 2(3):231-239, 1988
R Roach, "Random subcloning" Genome Research 5(5):464-473, 1995

Important Papers

K Kent, Haussler, "Assembly of the working draft of the human genome with gigassembler", Genome Research 11(9):1541-1548 (2001)

GIGASSEMBLER was used by the Human Genome Project to assemble about
30,000 clones. It used BAC end sequencing along with
> genome-wide physical map,
> radiation hybrid map,
$>$ Genetic map,
> YAC-STS map, and
> cytogenetic map,
GIGASSEMBLER used the "overlap-layout-consensus" approach:
$>$ Detect prefix-suffix overlaps between BAC contigs to build an overlap graph,
$>$ Removed edges in graph that can be transitively inferred, and
$>$ Find paths in graph to generate contigs
Bao, Jiang and Girke, "AlignGraph: algorithm for secondary de novo genome assembly guided by closely related references", Bioinformatics (2014).

