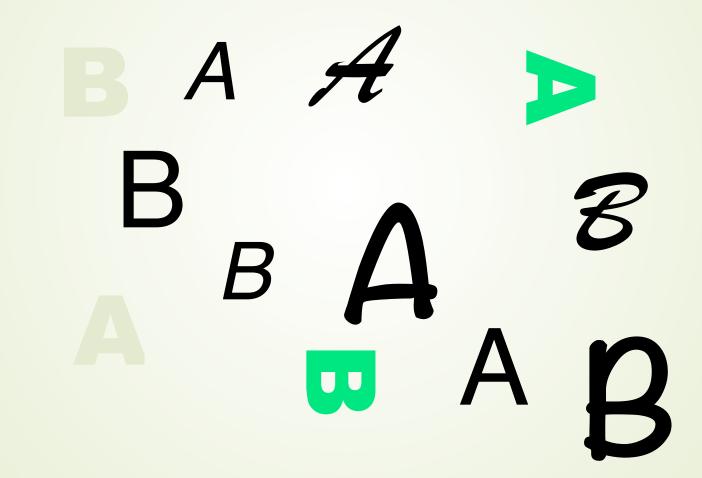
CAP 5510: Introduction to **Bioinformatics** CGS 5166: **Bioinformatics Tools Giri NARASIMHAN**

www.cis.fiu.edu/~giri/teach/BioinfF18.html

CAP 5510 / CGS 5166

Machine Learning

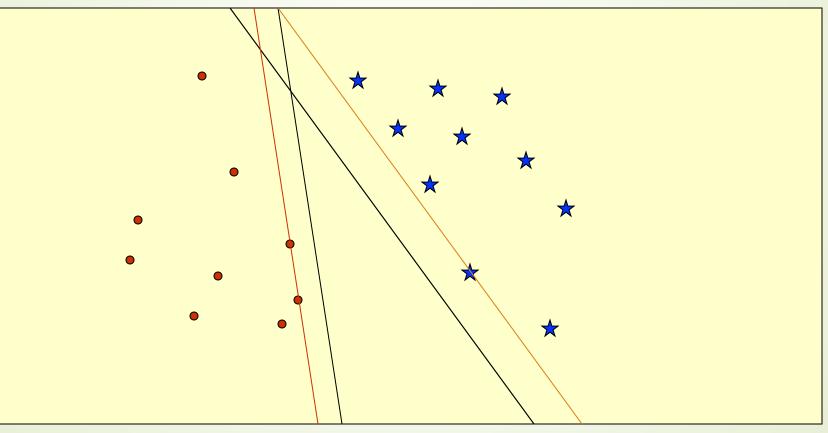

³ Machine Learning

- Human Endeavor
 - Data Information Knowledge
- Machine Learning
 - Automatically extracting information from data
 - **Types of Machine Learning**
 - Unsupervised
 - Clustering
 - Pattern Discovery
 - Supervised
 - Learning
 - Classification

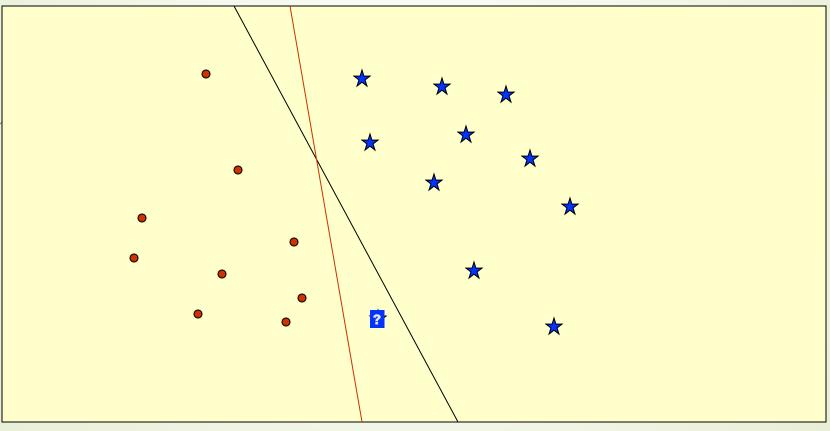
Support Vector Machines

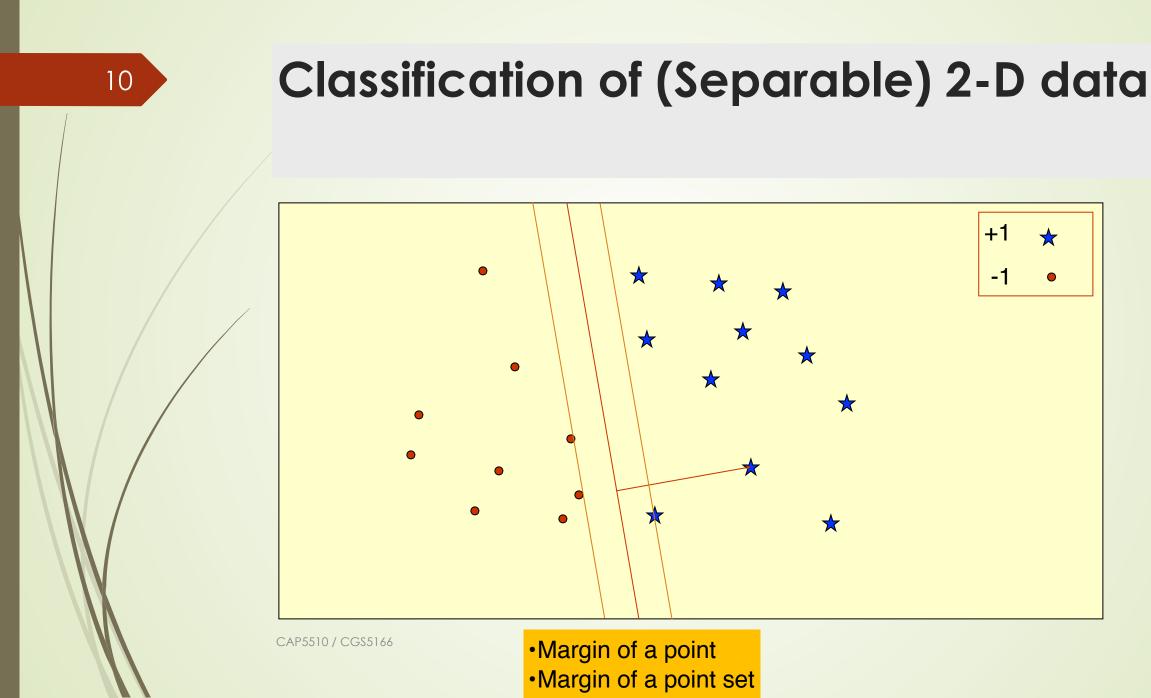
- Supervised Statistical Learning Method for:
 - Classification
 - Regression
- Simplest Version:
 - Training: Present series of <u>labeled</u> examples (e.g., gene expressions of tumor vs. normal cells)
 - Validation: Step to fine-tune hyperparameters
 - Prediction: Predict labels of new examples.

Learning Problems


Learning Problems

- Binary Classification
- Multi-class classification
 - Regression


SVM – Binary Classification


- Partition feature space with a surface.
- Surface is implied by a subset of the training points (vectors) near it. These vectors are referred to as Support Vectors.
- Efficient with high-dimensional data.
- Solid statistical theory
- Subsume several other methods.

Classification of 2-D (Separable) data

Classification of 2-D (Separable) data

Classification using the Separator 11 $\underline{\mathbf{W}} \cdot \underline{\mathbf{X}}_{i} + b > 0$ <u>X</u>i ☆ <u>w•x</u>; + b < 0 **Separator** • <u>X</u>i $\underline{\mathbf{W}} \cdot \underline{\mathbf{X}} + \mathbf{b} = \mathbf{0}$

Perceptron Algorithm (Primal) Rosenblatt, 1956

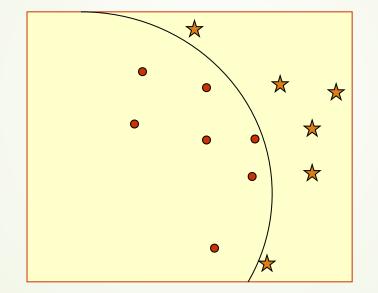
Given separable training set S and learning rate $\eta > 0$ <u>**w**</u>₀ = <u>0</u>; // Weight $b_0 = 0$; // Bias $\underline{\mathbf{w}} = \Sigma \mathbf{a}_{i} \mathbf{y}_{i} \underline{\mathbf{x}}_{i}$ $R = max x_i$ repeat k = 0;for i = 1 to N if $y_i (\underline{\mathbf{w}}_k \cdot \underline{\mathbf{x}}_i + \mathbf{b}_k) \le 0$ then $\underline{\mathbf{W}}_{k+1} = \underline{\mathbf{W}}_{k} + \eta \mathbf{y}_{i} \underline{\mathbf{X}}_{i}$ $b_{k+1} = b_k + \eta y_i R^2$ k = k + 1Until no mistakes made within loop CAP55 **Return** k, and (\underline{w}_k, b_k) where k = # of mistakes

roin

Performance for Separable Data

Theorem:

13


If margin m of S is positive, then

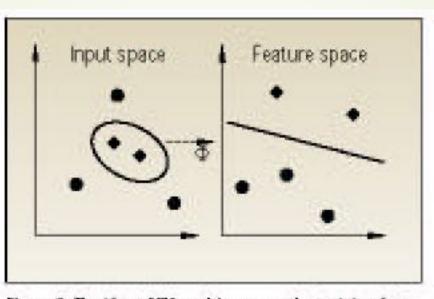
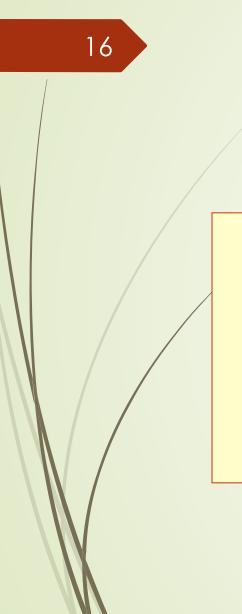
 $k \leq (2R/m)^2$

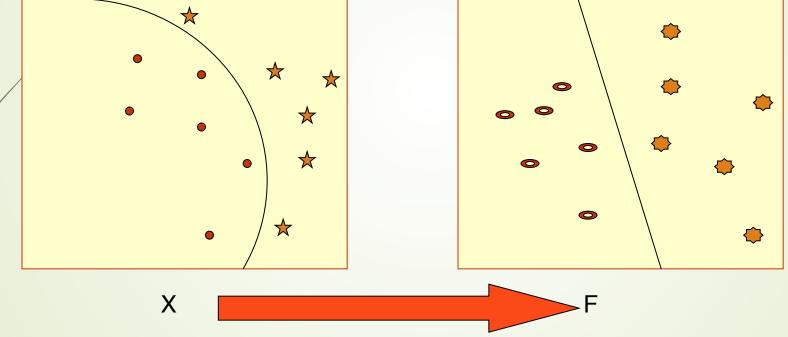
i.e., the algorithm will always converge, and will converge quickly.

CAP5510 / CGS5166

Non-linear Separators

Main idea: Map into feature space


Figure 2. The idea of SV machines: map the training data nonlinearly into a higher-dimensional feature space via Φ , and construct a separating hyperplane with maximum margin there. This yields a nonlinear decision boundary in input space. By the use of a kernel function, it is possible to compute the separating hyperplane without explicitly carrying out the map into the feature space.

CAP5510 / CGS5166

CAP5510 / CGS5166

Non-linear Separators

Useful URLs

http://www.support-vector.net

CAP5510 / CGS5166

Perceptron Algorithm (Primal) Rosenblatt, 1956

Given separable training set S and learning rate η >0 $\underline{\mathbf{w}}_0 = \underline{0}; // \text{Weight}$ $b_0 = 0$; // Bias $R = max |x_i|$ repeat k = 0; for i = 1 to N if $y_i (\underline{\mathbf{w}}_k \cdot \underline{\mathbf{x}}_i + \mathbf{b}_k) \le 0$ then $\underline{\mathbf{W}}_{k+1} = \underline{\mathbf{W}}_{k} + \eta \mathbf{y}_{i} \underline{\mathbf{X}}_{i}$ $b_{k+1} = b_k + \eta y_i R^2$ k = k + 1Until no mistakes made within loop **Return** k, and (\underline{w}_k, b_k) where k = # of mistakes

 $\underline{\mathbf{w}} = \Sigma \eta \mathbf{a}_{i} \mathbf{y}_{i} \underline{\mathbf{x}}_{i}$

CAP5510 / CG30100

Perceptron Algorithm (Dual)

```
Given a separable training set S
<u>a</u> = <u>0</u>; b<sub>0</sub> = 0;
R = max x_i
repeat
     for i = 1 to N
      if y_i (\sum \eta a_i y_j \underline{x}_i \cdot \underline{x}_j + b) \le 0 then
           a_{i} = a_{i} + 1
           b = b + y_i R^2
      endif
Until no mistakes made within inner for-loop
Return (a, b)
```

20

Perceptron Algorithm (Dual)

Given a separable training set S $\underline{a} = \underline{0}$; $b_0 = 0$; $R = \max |\underline{x}_i|$ repeat for i = 1 to N if $y_i (\sum_{a_j} y_j \Phi'(\underline{x}_i, \underline{x}_j) + b) \le 0$ then $a_i = a_i + 1$ $b = b + y_i R^2$ Until no mistakes made within loop Return (\underline{a} , b)

 $\Phi'(\underline{x}_i,\underline{x}_j) = \Phi(\underline{x}_i) \bullet \Phi(\underline{x}_j)$

CAP5510 / CGS5166

Different Kernel Functions

Polynomial kernel

$$\mathcal{L}(X,Y) = (X \bullet Y)^d$$

Radial Basis Kernel

Sigmoid Kernel
$$\kappa(X, Y) = \exp\left(\frac{-\|X - Y\|^2}{2\sigma^2}\right)$$

 $\kappa(X, Y) = \tanh(\omega(X \bullet Y) + \theta)$

CAP5510 / CGS5166

²² SVM Ingredients

- Support Vectors
- Mapping from Input Space to Feature Space
 - Dot Product Kernel function
 - Weights

Generalizations

How to deal with more than 2 classes?
 Idea: Associate weight and bias for each class.
 How to deal with non-linear separator?
 Idea: Support Vector Machines.

- How to deal with linear regression?
- How to deal with non-separable data?

24

Applications

Text Categorization & Information Filtering

12,902 Reuters Stories, 118 categories (91% !!)

Image Recognition

- Face Detection, tumor anomalies, defective parts in assembly line, etc.
- Gene Expression Analysis
- Protein Homology Detection

		Leaned the sheld						Optimized the doubt				
10ket	Method	PP	PN	174	15	Can	¥2	FX.	TF	TN	Cast	
Tricarboxylic acid	Radial SVM	\$	S	. 2	2442	- 34	4	1	10	2446	18	
	Epopreduced SVM	11	9	5	2435	29	3		11	2447	15	
	Ecoproduct-28VM	5	20	- 7	2445	25	4	÷	1.	2446	16	
	Despredict-78VM	4	.2	5	2440	25	4	4	1.	2446	16	
	Parzen	4	12	5	3440	25	0	12	5	2450	- 24	
	P1.12		D	i.	3441	26	1			2448	.18	
	C1.5	7	27	2	214.9	41						
	MOCI	3	6	1	2445	35	-					
S.espiration	Rodal SVM	.9	6	.24	2428	21	8	- 4	. 36	2429	. 16	
	Ecoproduct-1 SVM	21	20	20	2416	41	é	5	2.	2451	24	
	Dobproducte2 SVM	. 7		15	24.90	35	.7	4	24	2430	19	
	Ecopochet-3 SVM	3	.5	15	2434	33	3		34	2430	19	
	Parzon	22	10	20	2412	43	7	12	18	2130	. 41	
	PLC	10	10	25	3427	31	14	4	26	2423	22	
	C1.5	18	- 7	15	2416	41						
	MOCU	12	26	4	3425	64						
bubos prine	Recid SVM	9		100	2030	15	ć	1	1.20	2340	. 1	
	Ecoproduct-LSVM	3	6	115	2333	25	11	1	.20	2335	13	
	Despreduced SVM	1	.0	111	20.89	2)	. 9	1	.20	2337	11	
	Dot product 3 SVM	3	18	193	2349	35	2	1	1.20	2359	5	
	Parzan	6	2	115	2141	22	2	5	113	2341	11	
	PLC:	15	4	115	2386	24	R	1	18	4118	1	
	64.5	.71	21	192	2715	7.5	1.2					
	MCCL	36	26	36	2125	22	-	-		-		

Table 2: Comparison of error rates for various classification methods. Choose these described in Table 1. The methods are the radial basis function SVM, the SVMs using the scaled dot product ker telement to the first, second and find power, *Proceenvisions*, *Poler* 's have 's have a down, the scaled dot product ker telement to the first, second and find power, *Proceenvisions*, *Poler* 's have 's have a down, the positive rate is a down, the scale 's have a down, and the two document receives, C4.3 and MOC1. The next five columns are the files positive, fully negative, the positive rate of files positive rate training over three cross variation splits, followed by the cost, which is the number of files positive split we plus twice the number of files negatives. These five columns are repeated twice, first using the threshold leaned from the training tet, and then using the threshold that minimizes the to still the test of the trained optimization to not possible for the decision tree methods, since they do not produce ranked results.

			Launet firmited					Optimized theshold				
1 Ass	Merned	T.	TN.	TP	N	2.64	F	FN	TP	TN	Cost	
Proventione	Rala, SVK	3	. 1	28	2425	17	4	5	.20	2428	14	
	Dot-product-1 SVM	14	U	.24	24.5	34	12	. 4	.29	24.00	16	
	Dot product 2 SVM	4	D	22	2425	36	1	6	29	2428	10	
	Dot-product-1 SVM	.3	15	17	2429	.76	1	7	28	2470	16	
	Parsen	21	1	30	2411	31	1	9	25	2429	21	
	F.D	1	12	27	2425	.71	12	7	28	3420	26	
	Ci 5	17	10	25	2415	37	-	-	-	-	10.4	
	10021	10	17	18	2422	-14	-	-	-	-		
History	Radici SVM	- 61	2	- 2	2456	- 1	2	2	9	2456	- 1	
	Dot-product-1.8VM	0	- 4	7	24.56	8	- 5	2	. 9	2456	- 4	
	Dot product 2 SVM.	- Q.	1	5	24.96	N.	2	2	. 2	2156	- 4	
	Dot-product-1 SVM	- C	- 2	1	2456	16	5.	2	. 9	3456	- 4	
	Parvos	2	1	- 81	2454	8	1	3	8	2455	7	
	F_D	- C.	3	5	2456	6	2	1	10	3454	- 4	
	C4S	2	- 2	2	2454		-	-	-	-	-	
	12024	2		- 5	26:4	12	-	-				
Halts-out-helps	Kada SVX	1	14	3	2400	30	- Q.	.0	- 9.	2454	32	
	Dot product 1 SVM	-26	L¢.	- 21	2461	52	- 21	16	9	2151	32	
	Dot-product-2.85M	4	If	- 50	2447	36	- 5	16	- 9	3451	.32	
	Dot-product.3 SV3d	1.	Lé.	5	2450	33	2	16	0	3451	3.2	
	Paren	14	16	- 2.	2437	46	- 2	16	0	2451	32	
	F_0	14	- B.C.	- 9	2431	÷4.	- 5	16	0	3451	32	
	C=5	2	16	0	2445	34	-	-	4	-		
	MORT .	4	H.	- 2	2445	10	-	-	-			

Table 3: Comparison of error rates for various elassification methods (continued). See captom for Table 2 $\,$

Class	Kernel	1.0	Tetal				
hica broghe sold	Asstral	12	21	15	22	21	97
0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Dot-product-1	15	22	31	23	22	100
	Dot-peoduct-2	16	23	17	22	22	. 95
	Dot-product-3	16	22	17	23	22	1.00
Respiration .	Reih 15	16	18	23	20	ie.	- 93
	Dobproface1	24	24	25	27	23	127
	Dataproduct 2	19	15	70	.24	29	11
	Dobproduct-3	19	15	36	22	21	103
Ribosome	St.dial	8	12	10	15	.3	25
	Douportreed.	13	18	14	16	:6	11
	Do. product Z	11	1¢	14	10	.2	. 72
	Contraport.	4	15	12	13	15	- 63
Freegasterine	St.dial .	14	10	5		.1	23
	Dooptofaco1	16	12	12	17	1.9	75
	Dot product 2	16	13	.5	-27	.2	-74
	Doo-product-3	16	13	16	16	12	13
Harrie	Scalual.	4	4	4	4	4	22
	Dot-product-1	-4	4	4	4	4	23
	Dat-product/2	4	4	4	4	4	22
	Do.posture.3.	4	4	4	4	4	25

Table 4: Comparison of SVM performance using various kernels. For each of the MVOD class, first out, SVMs were trained using four different kernel functions on five different random three fole optics of the delta, activity matters that texting on the recenting rated. The first column contains the class, as described in Table 1. The second column contains the kernel function, as described in Table 2. The next five columns contain the threshold optimized cost (i.e., the number of false positives plus twice the number of false negatives) for each of the five random three fole optim. The final column is the total cost ascessal five splits.

Tunity	Gene	Lecus	Errer	Description
TCA .	YP8:051W	CEIS	FN	mitochondrial scinite synthese
	YOR:142W	LSC1	FN	a subunit of succiny. CoA ligase
	YNRGJ.C	CETI	FN	mite chouse ial vitrate synthese
	YLR174W	IDP2	PN.	isocito to deleydrogenese
	VIL425W	KCDU	EN	e-isotoglutarete dehydrogenese
	YDALOSC	RODE	ΡN	component of <i>et</i> keteglournte celeydrogenase complex in metechondria
	YD: 066W	IDP1	FN.	naitechoadrial form of isocitrate dehythogenase
	YBL015W	ACIII	FP	acetyl CoA hydrolase
Resp	VP819.79	QCR2	EN	ubiquinal cytochronse-c reductase core pentein 2
	YPL27JW	AJPLS	FN	ATP synthase epsilon schemit
	YPL262W	FUMI	FP:	inte 184
	YME12CC	ND11	FP	mitchoadrial NADE ubiquinene 6 exideneducesee
	YK_095W	MIN.C	142	mitschondrial minate dehydrogenase
	YD1067C	CC839	FN	subunit VIIa of cytochrome o exidese
発液な	YPLC37C	BGDI	FP	,3 suburns of the nascent-polypeptide-associated complex (NAC)
	YLR406C	RPL313	FN	ribesemal protein L21B (L34B) (ML28)
	YLR075W	RPL JO	FP	ribesenul protsi., L10
	W4L009W	FFE1	FF	unidation elengation forcer RP 1/3
Prot	YHRC2/C	RPN1	FN	subtinit of 268 protensence (PA500 subtrict)
	YG.\$279W	Y.A.	L'IN	member of CDC/18/PAS1/SLC18 family of AI Piree
	YG30=3W	CEDI	FP	ubiquitin design degedences pretsen
	YDRCS9C	DOA4	FN	ubiquitir, is opepuidase
	Y12.020C	RPN4	FN	involved in aliquitin degradation pathway
Hin	VOL012C	ICA!	EN	histone-odated poetain
	YK_019C	CSE?	FTN	raquired for perper kinetochore function

Table 6: Consistently misclassified genes. The table has all 25 genes has are consistently misclassified by SVMs trained using the MVGD classifications listed in Table 1. Two types of errors are included: a false positive (FV) occurs when the SVM methodes the gene in the given class but the MVGD classification does not a false negative (FN) occurs when the SVM does not include the gene in the given class but the MVGD classification does.

Kernel 127	18milare	24	1.2	11+	128
dot-product 0	2	5	4	10	12
dot-procent 2	2	- 5	2	12	12
dot-product 5	2	-40	2	12	13
dot-procurt III	2	-40	2	12	13
dat-product 0	\$0	4.	2	12	13
dot-product 2	- 60	- 3	2	12	14
dist-product 5	50	3	2	12	14
dri procuri III		- 3	2	12	-14
dot-pps: ant 0	103	4	3	11	.13
dot procart 2	101	- 5	3	11	12
dot-product 5	101	- 5	3	11	12
fit surjear tob	101	- 5	4	11	12
dot-product 0	- 301	- 5	3	11	12
drit-procurt 2	- 200	-40	3	11	125
dot-product 5	301	4	3	11	1.7
det-precurt III	- 401	- 41	3	11	125
det-product 0	1000	177	3	11	- 10
dit-precart ?	10.0	- 52	3	11	192
dot-product 3	2000	- 5	3	11	12
dot-procinct III	10.0	- ñ.)	3	11	122
dot-product 0	97802	17		14	0
det-procurt ?	9792	9	2	12	.8
dot-product 5	97802	1	3	11	100
dot-procart III	1079.12	1.5	3	11	12

SVM SVM FP FN FP FN Dataset Features 4.6 4.8 5 3 Ovarian(original) 97602 Ovarian(modified) 97902 4.4 3.4 0 0 AML/ALL train 0.6 2.8 7129 0 0 AML treatment 4.8 3.5 3 2 7129 Color 2000 3.8 3.7 3 3

Table 5: Results for the perceptron on all data sets. The results are sveraged over 5 shufflings of the data as this algorithm is sensitive to the order in which it receives the data points. The first column is the dataset used and the second is number of features in the dataset. For the ovarian and colon datasets, the number of normal tissues misclassified (FP) and the number of timor tissues misclassified (FN) is reported. For the AML/ALL training dataset, the number of AML samples misclassified (FP) and the number of ALL patients misclassified (FN) is reported. For the AML treatment dataset, the number of musiclessified (FN) is reported. The last two columns report the best more obtained by the SVM on that dataset.

Table I: Error rates for ovarian eancer tissue experiments.

For each scuting of the SVM consisting of a larger of and diagonal fitness (DF), each dama was elastified. Column 2 in the number of features (decay) used. Recented are the number of normal tissues misclassified (FP), turner tissues misclassified (FN), turner tissues classified correctly (TP), and normal tissues classified correctly (TN).

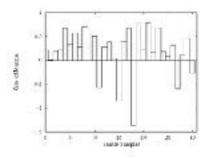


Figure 1: SVM classification margine for marian tissues. When classifying, the SVM calculates a magin which is the distance of an example from the decision boundary is has learned. In this graph, the margin for each tissue sample calculated using (10) is shown. A positive value indicates a correct classification, and a regative value indicates an incorrect classification. The most negative point corresponds to clasm N(30). The second most negative point corresponds in tissue HWHC3.