CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

Giri Narasimhan
 ECS 254; Phone: $\times 3748$ giri@cis.fiu.edu

https://users.cs.fiu.edu/~giri/teach/BioinfF18.html

Evolution and Phylogeny

Darwin: Evolution \& Natural Selection

\square Charles Darwin' s 1859 book (On the Origin of Species By Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life) introduced the Theory of Evolution.
\square Struggle for existence induces a natural selection. Offspring are dissimilar from their parents (that is, variability exists), and individuals that are more fit for a given environment are selected for. In this way, over long periods of time, species evolve. Groups of organisms change over time so that descendants differ structurally and functionally from their ancestors.

Dominant View of Evolution

\square All existing organisms are derived from a common ancestor and that new species arise by splitting of a population into subpopulations that do not crossbreed.
OOrganization: Directed Rooted Tree; Existing species: Leaves; Common ancestor species (divergence event): Internal node; Length of an edge: Time.

PEDIGREE OF MAN.

Five kingdom
system
(Haeckel, 1879)

Slide by Pevsner

animals plants
fungi
protists monera

mammals

vertebrates
invertebrates

protozoa

Page 516

Evolution \& Phylogeny

\square At the molecular level, evolution is a process of mutation with selection.
\square Molecular evolution is the study of changes in genes and proteins throughout different branches of the tree of life.
\square Phylogeny is the inference of evolutionary relationships. Traditionally, phylogeny relied on the comparison of morphological features between organisms. Today, molecular sequence data are also used for phylogenetic analyses.

Questions for Phylogenetic Analysis

How many genes are related to my favorite gene?
\square How related are whales, dolphins \& porpoises to cows?
\square Where and when did HIV or other viruses originate?
\square What is the history of life on earth?
\square Was the extinct quagga more like a zebra or a horse?

Slide by Pevsner

Phylogenetic Trees

\square Molecular phylogeny uses trees to depict evolutionary relationships among organisms. These trees are based upon DNA and protein sequence data.

Tree Roots

\square The root of a phylogenetic tree represents the common ancestor of the sequences. Some trees are unrooted, and thus do not specify the common ancestor.
\square A tree can be rooted using an outgroup (that is, a taxon known to be distantly related from all other OTUs).

Tree nomenclature: roots

Numbers of rooted and unrooted trees: 3 OTUs

For three operational taxonomic units (OTUs) there is one possible unrooted tree.

Any of the three edges can be selected to form a root.

Three rooted trees are possible.

Numbers of rooted and unrooted trees: 4 OTUs

(b)

 possible unrooted trees.

For 4 OTUs there are 15 possible rooted trees.

There is only one of these 15 trees that accurately describes the evolutionary process by which these four sequences evolved.

Tree Nomenclature

Fig. 7,8
Page 232

Tree nomenclature

Slide by Pevsner

operational taxonomic unit (OTU)

Fig. 7,8
Page 232

Tree nomenclature

Slide by Pevsner

Node (intersection or terminating point

Fig. 7,8
Page 232

Tree nomenclature

Branches are unscaled...

Slide by Pevsner

 Branches are Jaleu...
...OTUs are neatly aligned, and nodes reflect time

...branch lengths are proportional to number of amino acid changes

Fig. 7,8
Page 232

Tree nomenclature

Fig. 7,9
Page 233

Examples of multifurcation: failure to resolve the branching order of some metazoans and protostomes

Rokas A. et al., Animal Evolution and the Molecular Signature of Radiations

Tree nomenclature: clades

Slide by Pevsner

Clade ABF (monophyletic group)

Clade
group of organisms believed to have evolved from a common ancestor

Monophyletic
a group of organisms that consists of all the descendants of a common ancestor

Fig. 718
Page 232

Tree nomenclature: clades

CLADES

NOT CLADES

Tree nomenclature

Slide by Pevsner

Fig. 7,8
Page 232

Tree nomenclature

Slide by Pevsner

Clade ABF/CDH/G

Fig. 7,8
Page 232

Tree nomenclature: roots

Slide by Pevsner

Rooted tree

Unrooted tree
(specifies evolutionary
path)

Fig. 7. 10
Page 234

Tree nomenclature: outgroup rooting

Slide by Pevsner

Fig. 7.10
Page 234

Molecular Clock Hypothesis

- The molecular clock is a figurative term for a technique that uses the mutation rate of biomolecules to deduce the time in prehistory when two or more life forms diverged.
In the 1960s, sequence data were accumulated for small, abundant proteins such as globins, cytochromes c , and fibrinopeptides.
\square Some proteins appeared to evolve slowly, while others evolved rapidly.
Linus Pauling, Emanuel Margoliash and others proposed the hypothesis of a molecular clock:
- For every given protein, the rate of molecular evolution is approximately constant in all evolutionary lineages.

Molecular Clock Hypothesis

Molecular Clock Hypothesis - Implications

\square If protein sequences evolve at constant rates, they can be used to estimate the times that sequences diverged. This is analogous to dating geological specimens by radioactive decay.

Species trees versus gene/protein trees

Molecular evolutionary studies can be complicated by the fact that both species and genes evolve. Speciation usually occurs when a species becomes reproductively isolated. In a species tree, each internal node represents a speciation event.

Genes (and proteins) may duplicate or otherwise evolve before or after any given speciation event. The topology of a gene (or protein) based tree may differ from the topology of a species tree.

Species trees versus gene/protein trees

B\&FG 3e
Fig. 7.13
n~~~~に元

Species trees versus gene／protein trees

B\＆FG 3e A gene（e．g．a globin）may duplicate before or after two Fig． 7.13 species diverge！

Stage I: Use of DNA, RNA, or protein

For phylogeny, DNA can be more informative.

Some substitutions in a DNA sequence alignment can be directly observed: single nucleotide substitutions, sequential substitutions, coincidental substitutions. Additional mutational events can be inferred by analysis of ancestral sequences.

Two sequences (human and mouse) and their common ancestor: we can infer which DNA changes occurred over time

DNA

Two sequences (human and mouse) and their common ancestor: we can infer which DNA changes occurred over time

Step matrices: number of steps required to change a character
(a)

	A	C	T	G
A	0	1	1	1
C	1	0	1	1
T	1	1	0	1
G	1	1	1	0

nucleotide step matrix
(b)

	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	V	W	Y
A	0	2	1	1	2	1	2	2	2	2	2	2	1	2	2	1	1	1	2	2
C		0	2	3	1	1	2	2	3	2	3	2	2	3	1	1	2	2	1	1
D			0	1	2	1	1	2	2	2	3	1	2	2	2	2	2	1	3	1
E				0	3	1	2	2	1	2	2	2	2	1	2	2	2	1	2	2
F					0	2	2	1	3	1	2	2	2	3	2	1	2	1	2	1
G						0	2	2	2	2	2	2	2	2	1	1	2	1	1	2
H							0	2	2	1	3	1	1	1	1	2	2	2	3	1
I								0	1	1	1	1	2	2	1	1	1	1	3	2
K									0	2	1	1	2	1	1	2	1	2	2	2
L										0	1	2	1	1	1	1	2	1	1	2
M											0	2	2	2	1	2	1	1	2	3
N												0	2	2	2	1	1	2	3	1
P													0	1	1	1	1	2	2	2
Q														0	1	2	2	2	2	2
R															0	1	1	2	1	2
S																0	1	2	1	1
T																	0	2	2	2
V																		0	2	2
W																			0	2
Y																				0

amino acid step matrix

B\&FG 3e For amino acids, between 1 and 3 nucleotide changes are Fig. 7.16 required to change one residue to another.

Stage 2: Multiple sequence alignment

The fundamental basis of a phylogenetic tree is a multiple sequence alignment.
(If there is a misalignment, or if a nonhomologous sequence is included in the alignment, it will still be possible to generate a tree.)

Consider the following alignment of 13 homologous globin proteins (see Fig. 3.2)

Multiple alignment of myoglobins，alpha globins，beta globins
 myoglobin＿kanga－－－－－－－－－－－－－MGLSDGEWQLVLNIWGKVETDEGGHGKDVLIRLFKGHPETLEKFDKF

 myoglobin＿harbo－－－－－－－－－－－－－MGLSEGEWQLVLNVWGKVEADLAGHGQDVLIRLFKGHPETLEKFDKF myoglobin＿gray＿ \qquad －MGLSD alpha＿globin＿ho alpha＿globin＿ka alpha＿globin＿do\qquad －MV－LSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF
\qquad －V－LSAADKGHVKAIWGKVGGHAGEYAAEGLERTFHSFPTTKTYFPHF beta globin dog－－－－－－－－－－－－MVHLTAEEKSLVSGLWGKV－－NVDEVGGEALGRLLIVYPWTORFFDSE beta＿globin＿rab－－－－－－－－－－－－MVHLSSEEKSAVTALWGKV－－NVEEVGGEALGRLLVVYYPWTQRFFESF beta＿globin＿kan－－－－－－－－－－－－－VHLTAEEKNAITSLWGKV－－AIEQTGGEALGRLLIVYPWTSRFFDHF globin＿riverlam－PIVDS－－－－GSPAVLSAAEKTKIRSAWAPVYSNYETSGVDILVKFFTSTPAAQEFFPKF globin＿sealampr MPIVDT－－－－GSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKF globin＿soybean－－－－－－－－－－－－－VAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFL globin＿insect MKFLILALCFAAASALSADQISTVQASFDKVKGD－－－－PVGILYAVFKADPSIMAKFTQF

myoglobin＿kanga KHLKSEDEMKASEDLKKHGITVLTALGNILKKKGHHEAELKPLAQS－－－HATKHKIPVQF myoglobin＿harbo KHLKTEAEMKASEDLKKHGNTVLTALGGILKKKGHHDAELKPLAQS－－－HATKHKIPIKY myoglobin＿gray＿KHLKSEDDMRRSEDLRKHGNTVLTALGGILKKKGHHEAELKPLAQS－－－HATKHKIPIKY alpha＿globin＿ho－DLSHGSA－－－－－QVKAHGKKVGDALTLAVGHLDDLPGALSNLSDL－－－HAHKLRVDPVN alpha＿globin＿ka－DLSHGSA－－－－－QIQAHGKKIADALGQAVEHIDDLPGTLSKLSDL－－－HAHKLRVDPVN alpha＿globin＿do－DLSPGSA－－－－－QVKAHGKKVADALTTAVAHLDDLPGALSALSDL－－－HAYKLRVDPVN beta＿globin＿dog GDLSTPDAVMSNAKVKAHGKKVLNSFSDGLKNLDNLKGTFAKLSEL－－－HCDKLHVDPEN beta＿globin＿rab GDLSSANAVMNNPKVKAHGKKVLAAFSEGLSHLDNLKGTFAKLSEL－－－HCDKLHVDPEN beta＿globin＿kan GDLSNAKAVMANPKVLAHGAKVLVAFGDAI KNLDNLKGTFAKLSEL－－－HCDKLHVDPEN globin＿riveřlam KGMTSADELKKSADVRWHAERIINAVNDAVASMDDTEKMSMK－－DLSGKHAKSFQVDPQY globin＿sealampr KGLTTADQLKKSADVRWHAERIINAVNDAVASMDDTEKMSMKLRDLSGKHAKSFQVDPQY globin＿soybean ANPTDG－－－－VNPKLTGHAEKLFALVRDSAGQL－KASGTVVADAALGSVHAQKAVTNPEF globin＿insect AG－KDLESIKGTAPFEIHANRIVGFFSKIIGELPNIEADVNTFVAS－－－HKPRGVTHDQ－

vv voO O

चVचVvVv＊
○
○

myoglobin＿kanga LEFISDAIIQVIQSKHAGNFGADAQAAMKKALELFRHDMAAKYKEFGFQG myoglobin＿harbo LEFISEAIIHVLHSRHPAEFGADAQGAMNKALELFRKDIATKYKELGFHG myoglobin gray LEFISEAIIHVLHSKHPAEFGADAQAAMKKALELFRNDIAAKYKELGFHG alpha＿globin＿ho alpha＿globin＿ka FKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR－－－－－－ FKLLSHCLLVTFAAHLGDAFTPEVHASLDKFLAAVSTVLTSKYR－－－－－－ alpha＿globin＿do FKLLSHCLLVTLACHHPTEFTPAVHASLDKFFAAVSTVLTSKYR－－－－－－ beta＿globin＿dog FKLLGNVLVCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH－－－－－－ beta＿globin＿rab FRLLGNVLVIVLSHHFGKEFTPQVQAAYQKVVAGVANALAHKYH－－－－－－ beta＿globin＿kan FKLLGNIIVICLAEHFGKEFTIDTQVAWQKLVAGVANALAHKYH－－－－－－ globin＿riverlam FKVL－AVIADTVAAG－－－－－－－－－DAGFEKLSMCIILMLRSAY－－－－－－－ globin＿sealampr FKVLAAVIADTVAAG－－－－－－－－－DAGFEKLMSMICILLRSAY－－－－－－－ globin＿soybean－－VVKEALLKTIKAAVGDKWSDELSRAWEVAYDELAAAIKAK－－－－－－－－ globin＿insect

Fig． 7.17

Open circles：positions that distinguish myoglobins，alpha globins，beta globins

∇ gaps

100\％
 conserved

myoglobin＿kanga－－－－－－－－－－－－－MGLSDGEWQLVLNIWGKVETDEGGHGKDVLIRLFKGHPETLEKFDKF myoglobin＿harbo－－－－－－－－－－－－MGLSEGEWQLVLNVWGKVEADLAGHGQDVLIRLFKGHPETLEKFDKF myoglobin＿gray＿－－－－－－－－－－－－MGLSDGEWHLVLNVWGKVETDLAGHGQEVLIRLFKSHPETLEKFDKF alpha＿globin＿ho－－－－－－－－－－MV－LSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF alpha＿globin＿ka－－－－－－－－－－－－－V－LSAADKGHVKAIWGKVGGHAGEYAAEGLERTFHSFPTTKTYFPHF alpha globin do－－－－－－－－－－－－－V－LSPADKTNIKSTWDKIGGHAGDYGGEALDRTFQSFPTTKTYFPHF beta＿globin＿dog－－－－－－－－－－－－MVHLTAEEKSLVSGLWGKV－－NVDEVGGEALGRLLIVYPWTQRFFDSF beta＿globin＿rab－－－－－－－－－－－－MVHLSSEEKSAVTALWGKV－－NVEEVGGEALGRLLVVYPWTQRFFESF beta globin kan－－－－－－－－－－－－－VHLTAEEKNAITSLWGKV－－AIEQTGGEALGRLLIVYPWTSRFFDHF globin＿riverlam－PIVDS－－－－GSPAVLSAAEKTKIRSAWAPVYSNYETSGVDILVKFFTSTPAAQEFFPKF globin＿sealampr MPIVDT－－－－GSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKF globin＿soybean－－－－－－－－－－－－VAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFL globin＿insect MKFLILALCFAAASALSADQISTVQASFDKVKGD－－－－PVGILYAVFKADPSIMAKFTQF

Stage 2: Multiple sequence alignment

[I] Confirm that all sequences are homologous
[2] Adjust gap creation and extension penalties as needed to optimize the alignment
[3] Restrict phylogenetic analysis to regions of the multiple sequence alignment for which data are available for all taxa (delete columns having incomplete data).

Constructing Evolutionary/Phylogenetic Trees

$\square 2$ broad categories:

- Distance-based methods
>Ultrametric
>Additive:
- UPGMA
- Transformed Distance
- Neighbor-Joining
- Character-based
$>$ Maximum Parsimony
$>$ Maximum Likelihood
>Bayesian Methods

Ultrametric

\square An ultrametric tree:

- decreasing internal node labels
- distance between two nodes is label of least common ancestor.
- An ultrametric distance matrix:
- Symmetric matrix such that for every i, j, k, there is tie for maximum of $D(i, j), D(j, k), D(i, k)$

Ultrametric: Assumptions

\square Molecular Clock Hypothesis, Zuckerkandl \& Pauling, 1962: Accepted point mutations in amino acid sequence of a protein occurs at a constant rate.

- Varies from protein to protein
- Varies from one part of a protein to another

Ultrametric Data Sources

\square Lab-based methods: hybridization

- Take denatured DNA of the 2 taxa and let them hybridize. Then measure energy to separate.
\square Sequence-based methods: distance

Ultrametric: Example

	A	B	C	D	E	F	G	H
A	0	4	3	4	5	4	3	4
B								
C								
D								
E								
F								
G								
H								
$4 / 5 / 15$								

Ultrametric: Example

	A	B	C	D	E	F	G	H
A	0	4	3	4	5	4	3	4
B		0	4	2	5	1	4	4
C								
D								
E								
F								
G								
H								
$4 / 5 / 15$								

4/5/15
CAP5510 / CGS5166

Ultrametric: Distances Computed

	A	B	C	D	E	F	G	H
A	0	4	3	4	5	4	3	4
B		0	4	2	5	1	4	4
C							2	
D								
E								
F								
G								
H								
$4 / 5 / 15$								

Ultrametric: Distances Computed

	A	B	C	D	E	F	G	H
A	0	4	3	4	5	4	3	4
B		0	4	2	5	1	4	4
C							2	
D								
E								
F								
G								
H								
$4 / 5 / 15$								

Ultrametric: Assumptions

\square Molecular Clock Hypothesis, Zuckerkandl \& Pauling, 1962: Accepted point mutations in amino acid sequence of a protein occurs at a constant rate.

- Varies from protein to protein
- Varies from one part of a protein to another

Ultrametric Data Sources

\square Lab-based methods: hybridization

- Take denatured DNA of the 2 taxa and let them hybridize. Then measure energy to separate.
\square Sequence-based methods: distance

Additive-Distance Trees

Additive distance trees are edge-weighted trees, with distance between leaf nodes are exactly equal to length of path between nodes.

	A	B	C	D
A	0	3	7	9
B		0	6	8
C			0	6
D				0

Unrooted Trees on 4 Taxa

Four-Point Condition

\square If the true tree is as shown below, then

1. $d_{A B}+d_{C D}<d_{A C}+d_{B D}$, and
2. $d_{A B}+d_{C D}<d_{A D}+d_{B C}$

Unweighted pair-group method with arithmetic means (UPGMA)

	A	B	C
B	$d_{A B}$		
C	$d_{A C}$	$d_{B C}$	
D	$d_{A D}$	$d_{B D}$	$d_{C D}$

	$A B$	C
C	$d_{(A B) C}$	
D	$d_{(A B) D}$	$d_{C D}$

Transformed Distance Method

-UPGMA makes errors when rate constancy among lineages does not hold.
\square Remedy: introduce an outgroup \& make corrections
\square Now apply UPGMA $D_{i^{\prime}}=\frac{D_{i j}-D_{i o}-D_{j o}}{2}+\left(\sum_{k=1}^{n} D_{k o} / n\right)$

Saitou \& Nei: Neighbor-Joining Method

\square Start with a star topology.
\square Find the pair to separate such that the total length of the tree is minimized. The pair is then replaced by its arithmetic mean, and the process is repeated.

$$
S_{12}=\frac{D_{12}}{2}+\frac{1}{2(n-2)} \sum_{k=3}^{n}\left(D_{1 k}+D_{2 k}\right)+\frac{1}{(n-2)} \sum_{3 \leq i \leq j \leq n} D_{i j}
$$

Neighbor-Joining

$$
S_{12}=\frac{D_{12}}{2}+\frac{1}{2(n-2)} \sum_{k=3}^{n}\left(D_{1 k}+D_{2 k}\right)+\frac{1}{(n-2)} \sum_{3 \leq i \leq j \leq n} D_{i j}
$$

http://en.wikipedia.org/wiki/Neighbor_joining

Neighbor-joining method

Constructing Evolutionary/Phylogenetic Trees

$\square 2$ broad categories:

- Distance-based methods
$>$ Ultrametric
- Additive:
- UPGMA
- Transformed Distance
- Neighbor-Joining
- Character-based
$>$ Maximum Parsimony
> Maximum Likelihood
>Bayesian Methods

Character-based Methods

\square Input: characters, morphological features, sequences, etc.
\square Output: phylogenetic tree that provides the history of what features changed. [Perfect Phylogeny Problem]
\square one leaf/object, 1 edge per character, path \Leftrightarrow changed traits

	1	2	3	4	5
A	1	1	0	0	0
B	0	0	1	0	0
C	1	1	0	0	1
D	0	0	1	1	0
E	0	1	0	0	0

Example

DPerfect phylogeny does not always exist.

	1	2	3	4	5
A	1	1	0	0	0
B	0	0	1	0	0
C	1	1	0	0	1
D	0	0	1	1	0
E	0	1	0	0	0

	1	2	3	4	5
A	1	1	0	0	0
B	0	0	1	0	1
C	1	1	0	0	1
D	0	0	1	1	0
E	0	1	0	0	1

Maximum Parsimony

-Minimize the total number of mutations implied by the evolutionary history

Examples of Character Data

	1	2	3	4	5		Characters/Sites								
A	1	1	0	0	0	Sequences	1	2	3	4	5	6	7	8	9
B	0	0	1	0	1	1	A	A	G	A	G	T	T	C	A
C	1	1	0	0	1	2	A	G	C	C	G	T	T	C	T
D	0	0	1	1	0	3	A	G	A	T	A	T	C	C	A
E	0	1	0	0	1	4	A	G	A	G	A	T	C	C	T

Maximum Parsimony Method: Example

	Characters/Sites								
Sequences	1	2	3	4	5	6	7	8	9
1	A	A	G	A	G	T	T	C	A
2	A	G	C	C	G	T	T	C	T
3	A	G	A	T	A	T	C	C	A
4	A	G	A	G	A	T	C	C	T

Unrooted Trees on 4 Taxa

Tree I ($(1,2),(3,4))$

(b) Site 4

(c) Site 5

(d) Site 9

Tree II ($(1,3),(\mathbf{2}, 4))$

Tree III
($(1,4),(2,3)$)

FigURE 5.14 Three possible unrooted trees (I, II, and III) for four DNA sequences ($1,2,3$, and 4) that have been used to choose the most parsimonious tree. The possible phylogenetic relationships among the four sequences are shown in Newick format. The terminal nodes are marked by the sequence number and the nucleotide type at homologous positions in the extant species. Each dot on a branch means a substitution is inferred on that branch. Note that the nucleotides at the two internal nodes of each tree represent one possible reconstruction from among several alternatives. For example, the nucleotides at both the internal nodes of tree III(d) (bottom right) can be A instead of T. In this case, the two substitutions will be positioned on the branches leading to species 2 and 4. Alternatively, other com-

	1	2	3	4	5	6	7	8	9
1	A	A	G	A	G	T	T	C	A
2	A	G	C	C	G	T	T	C	T
3	A	G	A	T	A	T	C	C	A
4	A	G	A	G	A	T	C	C	T

Inferring nucleotides on internal nodes

Figure 5.15 Nucleotides in six extant species (1-6) and inferred possible nucleotides in five ancestral species (7-11) according to the method of Fitch (1971). Unions are indicated by parentheses. Two different trees (a and b) are depicted.
Note that the inference of an ancestral nucleotide at an internal node is dependent on the tree. Modified from Fitch (1971).

Searching for the Maximum Parsimony Tree: Exhaustive Search

Figure 5.16 Exhaustive stepwise construction of all 15 possible trees for five OTUs. In step 1, we form the only possible unrooted tree for the first three OTUs (A, B, and C). In step 2, we add OTU D to each of the three branches of the tree in step 1, thereby generating three unrooted trees for four OTUs. In step 3, we add OTU E to eagh of the five branches of the three trees in step 2, thereby generating 15 unrooted trees. Additions of OTUs are shown as heavier lines. Modifed from

Searching for the Maximum Parsimony Tree: Branch-\&-Bound

Probabilistic Models of Evolution

\square Assuming a model of substitution,

- $\operatorname{Pr}\left\{S_{i}(t+\Delta)=y \mid S_{i}(\dagger)=X\right\}$,
\square Using this formula it is possible to compute the likelihood that data D is generated by a given phylogenetic tree T under a model of substitution. Now find the tree with the maximum likelihood.

-Time elapsed? Δ
-Prob of change along edge?
$\operatorname{Pr}\left\{S_{i}(\dagger+\Delta)=Y \mid S_{i}(\dagger)=X\right\}$
-Prob of data? Product of prob for all edges
(a)

	1	2	3	4	5	6	7	8	9	$\ldots n$
OTU1	A	A	G	A	C	T	T	C	A	$\ldots \mathrm{N}$
OTU2	A	G	C	C	C	T	T	C	T	$\ldots \mathrm{N}$
OTU3	A	G	A	T	A	T	C	C	A	$\ldots \mathrm{N}$
OTU4	A	G	A	G	G	T	C	C	T	$\ldots \mathrm{N}$

(b)

(c)

+ Prob

+ Prob

FIGURE 5.19 Schematic representation of the calculation of the likelihood of a tree. (a) Data in the form of sequence alignment of length \boldsymbol{n}. (b) One of three possible trees for the four taxa whose
sequences are shown in (a). (c) The likelihood of a particular site, in this case site 5, equals the sums of the 16 probabilities of every possible reconstruction of ancestral states at nodes 5 and 6 in (b). (d) The likelihood of the tree in (b) is the product of the individual likelihoods for all n sites. (e) The likelihood is usually evaluated by summing the logarithms of the likelihoods at each site, and reported as the log likelihood of the tree. Modified from Swofford et al. (1996).

(d) $\quad L=L_{(1)} \times L_{(2)} \times L_{(3)} \times \ldots \times L_{(n)}=\prod_{i=1}^{n} L_{(i)}$
(4) $5 / 1 \mathfrak{l} \frac{1}{} L=\ln L_{(1)}+\ln L_{(2)}+\ln L_{(3)}+\ldots+L_{(n)}=\sum_{i=1}^{n} \ln L_{(i)}$

Computing Maximum Likelihood

