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Research into new methods to identify genes in anonymous genomic sequences has been going on for more than
15 years. Over this period of time, the field has evolved from the designing of programs to identify protein coding
regions in compact mitochondrial or bacterial genomes, to the challenge of predicting the detailed organization
of multi-exon vertebrate genes. The best program currently available perfectly locates more than 80% of the
internal coding exons, and only 5% of the predictions do not overlap a real exon. Given such accuracy,
computational methods are indeed very useful; however, they do not alleviate the need for experimental
validation. If the performances are satisfactory for the identification of the coding moiety of genes (internal coding
exons), the determination of the full extent of the transcript (5 ′ and 3 ′ extremities of the gene) and the location of
promoter regions are still unreliable. As the human and mouse genome sequencing projects enter a production
mode, the fully automated annotation of megabase-long anonymous genomic sequences is the next big
challenge in bioinformatics. 

INTRODUCTION

Computational methods for identifying genes in genomic DNA
sequences have been an active field of research for 15 years,
enjoying the calm and obscurity of confidential bioinformatics
circles. As the human and mouse genome projects enter a phase of
systematic sequencing, reliable automated techniques for
interpreting long anonymous genomic sequence (i.e., partitioning
them into genes, promoters, regulatory elements, intergenic region,
etc.) are suddenly needed. As a consequence, bioinformatics, and
the problem of gene finding have been attracting a lot more
attention in recent years (1). At the time of writing of this article,
∼45 Megabases (Mb) of human genomic sequence are finished, a
further 100–150 Mb should be sequenced in 1998, and then
300–500 Mb in each of the following years, until completion
(3000 Mb). On the mouse front, systematic sequencing should start
with 20 Mb in 1998, and progressively increase up to 500 Mb a
year, provided adequate financing is found. If current experimental
methods are adequate for characterizing sequences of a few
hundred kilobases (kb) at loci of special interest (e.g., disease
genes), it is clear that they cannot be systematically used to
‘annotate’ multi-megabase-long anonymous sequences. If the
human genome sequence data is to be exploited, computational
methods are the only alternative that can be used to provide a
minimal amount of characterization, either in an automated or
semi-automated way.

Among the large number of programs and methods currently
available, surprisingly few are known in the molecular geneticist
community. The first and main purpose of this article is to make
non-specialists aware of the diversity of programs (listed in
Table 1) that have been proposed to locate and analyze genes in
vertebrate genomic sequences.

The second purpose of this article is to provide some background
information about the principles on which the different categories
of programs are based. A minimal grasp of these principles is
necessary to understand which program will work best for a certain
type of data (e.g., genome survey versus finished contig), or which
programs can be usefully combined for improved predictions.

Before entering the subject, the two main concepts governing
the measure of prediction accuracy have to be introduced. First,
it should be clear that it is trivial to design a method capable of
predicting 100% of all internal exons, whether coding or
non-coding, in the human genome: retaining all the segments
flanked by AG and GT, will do it. Of course, such a method is
useless, as it produces many more false predictions (chance
occurrence of splicing sites) than real ones. This method has
100% sensitivity, but near 0% specificity. Requiring the splice site
to adhere to a stronger consensus and the candidate exon sequence
to obey additional rules [e.g., to contain an open reading frame
(ORF)] will certainly increase the specificity, but immediately
decrease the sensitivity; for instance, non-coding internal exons
will no longer be detected. The development of sequence analysis
methods has always been a struggle to keep both sensitivity (Sn)
and specificity (Sp) to an acceptable level. For this reason the
accuracy of methods, including those predicting genes, is best
expressed as the average of the two: (Sn + Sp)/2. In general,
authors adjust their program parameters so as to obtain Sn ≈ Sp.

Of the most recent review articles published on the subject of
gene identification one can cite an overview by Fickett (2), and
two more technical articles by Fickett (3) and Gelfand (4). We
must also cite the landmark comparative study by Burset and
Guigo (5). Finally, Li (6) and Gelfand (7) are maintaining very
useful bibliographies in electronic form.
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Table 1. Contact addresses and availability of the programs cited in this article

Program (ref) Electronic address Type of accessa

GeneID (57) geneid@darwin.bu.edu ES

www.imim.es/GeneIdentification/Geneid/geneid_input.html HP

GeneParser (63) beagle.colorado.edu/∼eesnyder/GeneParser.html HP, EX

Genie (71) www-hgc.lbl.gov/inf/genie.html HP, WS, ES

GenLang (58) www.cbil.upenn.edu/∼sdong/genlang_home.html HP, WS, SC

GENSCAN (72) gnomic.stanford.edu/GENSCANW.html HP, WS, ES

GENVIEW (65) www.itba.mi.cnr.it/webgene HP, WS

GRAIL (66) avalon.epm.ornl.gov HP, ES, CL

HEXON/FGENEH (59) dot.imgen.bcm.tmc.edu:9331/gene-finder/gf.html HP, WS, ES

MORGAN (–) www.cs.jhu.edu/labs/compbio/morgan.html HP, WS, EX

MZEF (52) clio.cshl.org/genefinder HP, WS, EX

ORFgene (75) www.itba.mi.cnr.it/webgene HP, WS

PROCRUSTES (74) www-hto.usc.edu/software/procrustes/index.html HP, WS, ES, EX

SorFind (24) www.rabbithutch.com HP, EX

VEIL (70) www.cs.jhu.edu/labs/compbio/veil.html HP, WS, ES, EX

Xpound (51) ftp://igs-server.cnrs-mrs.fr/pub/Banbury/xpound SC

Banbury Cross igs-server.cnrs-mrs.fr HP

Except for GeneID (E-mail server) and Xpound (ftp site), the addresses have to be invoked with the ‘http://’ prefix.
aHP, home page; ES, E-mail server (sequences are sent by E-mail); WS, web server (sequences are pasted in an interactive window); CL, client/server
protocol (part of the program is run on the calling machine (Xgrail); EX, executable code is available; SC, source code is available (file transfer by ftp).
The Banbury Cross home page (a gene identification software benchmark site) maintains an up-to-date list of gene structure prediction programs and
sites.

GENE FINDING: A QUICK HISTORY OF THE
METHODS AND CONCEPTS

Most of the early sequence data were obtained from mitochondrial
or bacterial genomes. Accordingly, computer methods to identify
genes were first developed in that context. Bacterial protein
coding regions consist of contiguous open reading frames (ORF).
On a pure statistical basis, one ORF (ATG to stop) longer than
300 bp (100 residue protein) is expected to randomly occur every
36 kb on a single strand of DNA (with %A = %C = %G =%T =25)
(8). Real proteins correspond on average to a 1000 bp ORF (330
residues). A simple algorithm retaining the longest overlapping
ORFs and applying a size threshold (for instance 300 bp) will
already detect most real genes, with good specificity. Thus, more
sophisticated methods are only needed to locate small genes,
interpret partial sequences (e.g. genome survey data) containing
incomplete ORFs, or overcome sequencing errors.

The codon usage statistics were first introduced for this purpose
by Staden and McLachlan in 1982 (9). The method simply
consisted of scanning the DNA sequence and measuring the
strength of codon preference within successive windows. At the
same time, Shepherd (10) and Fickett (11) proposed other
methods that take advantage of the compositional bias between
codon positions. As more genomic sequence data became
available for higher eukaryotes and vertebrates, it was clear that
reliably discriminating between exons and introns would require
much more sophisticated methods. Vertebrate protein coding
genes consist of six exons spanning ∼30 kb on average. However,
there is a wide variety in size and complexity, and ‘atypical’ genes
are not rare. In the ‘monster gallery’ of genes, one can cite

dystrophin, a gene spanning 2.4 Mb (reviewed in 12), and the
gene for blood coagulation factor VIII, spanning 186 kb with 26
exons ranging in size from 69 to 3106 bp, and introns as large as
32.4 kb. A CpG island in one of them (intron 22) initiates two
transcripts: a nested transcript in the same orientation, and another
one from the opposite strand (reviewed in 13). Other genes have
unusual extremities, such as those of the MAGE family (14), with
a 5′ untranslated region (UTR) spanning several internal exons,
or the Kallmann syndrome gene with a 4 kb 3′ UTR (15).

The mean internal coding exon size is 150 bp. This is a very
short segment on which to base a detection procedure. By chance
alone, ORFs (stop to stop) longer than 225 bp are expected to
randomly occur every kb on a single strand of DNA (8). Thus,
ORF size can no longer be a useful criteria for locating protein
coding regions. The challenge of identifying the short and sparse
vertebrate coding regions prompted the development of new
statistical methods to estimate the coding potential of arbitrary
genomic sub sequences.

A wide variety of protein coding measures (reviewed in 16)
were proposed and applied to the analysis of genomic sequences.
The amount of sequence data available led to the discovery that
exons and introns exhibit a distinct usage of nucleotide ‘words’
(17,18). This global property probably results from the
combination of codon preference with other characteristic
periodicities (19,20). The contrast in the usage of six nucleotide
words (hexamers) (17,21) was found to be the best single
property to predict whether a window of vertebrate genomic
sequence was coding or non-coding (16,22). The accuracy of the
best coding measure was ∼70% (i.e., 1/3 of the coding exons were



1737

Nucleic Acids Research, 1994, Vol. 22, No. 1 1737Human Molecular Genetics, 1997, Vol. 6, No. 10 Review

missed, and 1/3 of the ones predicted are not real) for coding
windows of at least 50 nucleotides in length.

With little prospect of finding better coding measures, scientists
in the field began to try various combinations of the existing
methods, hoping to improve the overall accuracy of predictions.
A straightforward, but effective, way of implementing this
concept was through a visual interface, simultaneously displaying
graphical representations of the selected coding measures as well
as ‘signal’ information (such as start/stop codons and splice sites).
This approach was pioneered by Staden (23). Legouis et al. (15)
used a semi-automated protocol to successfully identify the gene
for Kallmann syndrome from a 67 kb genomic contig containing
only two internal exons (141 + 222 coding nucleotides). The
protocol combined: (i) the selection of all ORFs larger than 50 bp
and flanked by reasonable consensus acceptor and donor splice
sites; (ii) ranking the candidate exons according to the hexamer
coding measure; and (iii) scanning the candidate exons for
similarity against protein sequence databases. A very similar
protocol (ORFs flanked by AG/GT are ranked according to their
coding potential and splice site strength) was formally integrated
in the SorFind program (24). In an independent test (5) SorFind
predicted 71% of the coding nucleotides, with a specificity of
85%. Similar performances (25,26) were reached by GRAIL I
(25) using a neural network to combine multiple coding measures
but disregarding splice site information. GRAIL I, the first exon
prediction program readily accessible through an E-mail server,
enjoyed a tremendous success within the community of
molecular geneticists, and the program marked the entry into the
modern era for gene identification software. Thanks to GRAIL,
biologists became aware of computational prediction methods
and began to trust them. It also prompted computer scientists to
explore increasingly sophisticated ways of combining sequence
analysis techniques, as well as to pay more attention to the ease
of use and accessibility of their programs.

EXON FINDING BY SIMILARITY SEARCH

As the above developments in statistical gene finding methods
were taking place, new sequence data accumulated exponentially
in the GenBank/EMBL/DDBJ databases (27,28). It became
increasingly likely that protein coding exons could be simply
recognized by a similarity search against the whole translated
database (29,30). About 50% (31,32) of all vertebrate genes have
retained enough similarity with their pre-metazoan ancestors to
exhibit a significant BLASTX (30) match in a database
containing the whole yeast genome, several complete bacterial
genomes, and most of Caenorhabditis elegans. The similarity
search approach received a tremendous boost from the large scale
sequencing of Expressed Sequence Tags (EST) (33–35).

Instead of having to detect exons through borderline similarities
with distant homologues, we are now in a position to look for exact
matches. More than 50% of all human genes might already have
a cognate public EST (36–38). However, the direct comparison of
large vertebrate genomic sequences and EST data is prone to
artifacts and computationally intensive. A very large number of
informative matches are due to the presence of ubiquitous SINES
and LINES repeats in vertebrate genomic sequences [up to 36%;
(39)]. It is thus imperative to carefully filter the genomic sequence
query prior to using it to scan an EST database. A flexible protocol
involves pre-scanning against a specific ‘junk’ database as well as

a small database of simple (i.e., microsatellite) repeats with a
standard similarity search program, and masking out the matching
nucleotides in the query (40–43). Specialized programs are also
available for this purpose (44,45).

Except in the rare cases where the complete sequence of a cDNA
or a homologous protein is already in the database, similarity
searches do not usually identify the entire gene. Due to the modular
structure of vertebrate proteins and the conservation of functional
motifs, protein databases similarities tend to only reveal a small
subset of the coding exons. On the other hand, EST matches most
often only identify the 3′ end (coding or non-coding) exons.

The positive results from similarity searches can also be used
as accessory evidence to reinforce exon predictions made from
signal-based or statistical methods. This was done manually prior
to the development of integrated software. The GRAIL
II/GENQUEST system was first to introduce an option to run
a posteriori database searches on the predicted exons (46). The
majority of current programs in use have the capacity to
incorporate database similarity search information in their gene
prediction scheme (see below).

FROM FINDING INDIVIDUAL EXONS TO PREDICTING
COMPLETE GENE STRUCTURES

Besides the compositional bias imposed by the constraints of
protein coding, vertebrate exons are also characterized by
sequence ‘signals’. Internal (coding and non-coding) exons are
bracketed by acceptor and donor splice sites, 5′ exons must lie
immediately downstream to a core promoter site (e.g., a
TATA-box) and eventually contain a translation start site (e.g.,
ATG), and 3′ exons should contain a polyadenylation signal and
eventually a stop codon. No exon prediction method can solely be
based on detecting these signals, because of their very low
information content (47) and/or their lack of statistical
significance (48).

However, important progress in automated gene identification
has come from the combining of statistical/compositional
techniques with signal detection methods into a single
framework. For instance, the prediction of individual internal
coding exons significantly improves when measures of the
coding potential are associated with the strength of the flanking
sites such as in SorFind (24), HEXON (49,50), Xpound (51),
GRAIL II (46), or the latest MZEF (52). According to its
documentation, GRAIL II finds 91% of all coding nucleotides,
with a performance independent of exon size, and a false positive
rate of 8.6%. In a later independent testing using larger genomic
sequences (16) those numbers became 71% and 30%,
respectively. This illustrates a general trend; the performances
estimated in independent benchmark studies tend to be lower than
initially published. Most of the performances summarized in
Table 2 are extracted from the work of Burset and Guigo (5).

The ultimate task of gene identification programs is to generate
a complete gene model including the correct assembly of the
individual internal exons and recognition of the 5′ and 3′
extremities of the transcript. Most programs to date have limited
their goal to the detection and assembly of the whole protein-
coding moiety: from the ATG of the first coding exon, through all
internal coding exons, to the stop codon of the last coding exon.
The performances cited in this article mostly concern the
identification of internal coding exons.
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Table 2. Estimated performances of the various programs

Program Original Test Prediction Sensitivity Specificity Sensitivity Specificity Missed Wrong

ref. ref. type (%nucl.) (%nucl.) (%exact exon) (%exact exon) exons exon

FGENEH 59 52 Gene structure 83 93 73 78 15 11

GeneID 57 5 Gene structure 69 77 42 46 28 24

GeneParser 63 5 Gene structure 66 79 35 40 29 17

Genie 71 71 Gene structure 87 88 69 70 10 15

GenLang 58 5 Gene structure 72 79 51 52 21 21

GENSCAN 72 72 Gene structure 93 93 78 81 9 5

GRAIL II 46 52 Internal exons 79 85 51 57 25 28

GRAIL II/GAP 66 63 Gene structure 83 87 – 52 25 10

HEXON 50 52 Internal exons 88 80 71 65 10 27

MORGAN – – Gene structure 83 79 58 51 14 –

MZEF 52 52 Internal exons 87 95 78 86 14 7

SorFind 24 5 Internal exons 71 85 42 47 24 14

VEIL 70 70 Gene structure 83 72 53 49 19 –

Xpound 51 5 Internal exons 61 87 15 18 32 13

We listed: (i) the best performance cited in an independent study or, (ii) the worse performance cited by the authors about their own program. Test sets vary in size,
complexity or (G+C) composition. Performances given here should be interpreted with caution. Any program can behave better or worse against a given sequence
or a new data set.
Definition of the data columns:
Sensitivity (nucl.): % of the actually coding nucleotides been predicted as coding.
Sensitivity (exon): % of the actual coding exons been predicted exactly right (both splice junctions).
Specificity (nucl.): % of the nucleotide predicted as coding been actually coding.
Specificity (exon): % of the predicted exons perfectly matching an actual exon.
Missed exons: % of actual exons not overlapping any prediction.
Wrong exons: % of predicted exons not overlapping any actual exon.
The best overall performers: MZEF (individual exon finder) and GENSCAN (gene structure prediction) are shown in bold.

In 1990, Fields and Soderlund (53) and Gelfand (54) pioneered
the field of whole gene structure prediction. The difference with
the previous problem of detecting individual exons is that the
predicted exons now have to fit and be assembled into a coherent
gene model.

Years of research have now resulted in many different
programs (Tables 1 and 2). Despite their diversity, most of them
use the ‘combinatorial approach’. They first generate a set of
candidate exons using a combination of coding measures and
splice site quality scores, or other specific signals for 5′ exons
(TATA-box, initiator ATG, etc.) and 3′ exons (stop and poly-
adenylation site). The resulting set of candidate exons are then
assembled to construct candidate gene structures, the best of
which is finally chosen as the most likely prediction.

A straightforward implementation of the combinatorial
approach encounters both conceptual and computational problems.
First, converting all the parameters associated with the various
components of a given gene model (coding measures, signal
strength, exon length, etc.) into a meaningful unique quality index
is not trivial. Second, the number of different assemblies of exons
and signals consistent with legitimate gene models of realistic sizes
(30–250 kb) can be huge. Sophisticated algorithms have to be
designed to solve this combinatorial problem and find the best gene
model(s) in a reasonable amount of time. The diversity of the
current gene structure prediction programs (listed in Table 1)
attests that many ways have been tried to solve the above problems.

The significant differences between these programs reside in:
(i) the methods used to combine the recognition of the individual
components; (ii) the ways used to estimate the ‘quality’ of
concurrent gene models; and (iii) the algorithms used to extract
the optimal gene model(s) and deal with the combinatorial
complexity. Some rules, like the one enforcing that protein
translation must proceed through the chain of internal exons (‘in
frame assembly’) may concern all three aspects; by dividing the
large pool of candidate exons into compatible subsets, the added
constraint strongly reduces the number of putative gene models,
enhances their a priori quality, and can even improve the
prediction of individual exons (55,56).

The detailed presentation of the various ‘gene parsing’ and
gene scoring methods behind each program would be rather
technical, and beyond the scope of the present review. In the
section below, a few key concepts are simply mentioned and
associated with various programs. The interested reader will find
more details in the original sources. The relative sizes of the
paragraphs are somewhat proportional to the impact of the
concept in the field.

Rule-based systems

GeneID (57) starts by identifying first, internal and last exons on
the basis of coding measures and signal strength, and uses a
heuristic, rule-based system to assemble these into models of
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ONE likely gene in each sequence. Typically, GeneID evaluates
tens of thousand of gene models. In a comparative study (5) using
a data set of 556 genes, GeneID predicted 44% of exons exactly,
with a specificity of 45% (Table 2).

Linguistic methods

GenLang (58) does not use the combinatorial approach but
interprets the usual coding measures and signal strengths in a
linguistic context as ‘leaf rules’ associated to a cost. A formal
grammar, optimized on a training set, is then used to generate a
gene model as the parse that minimizes the total cost. GenLang
performances are listed in Table 2.

Linear discriminant analysis (LDA)

LDA is a standard technique in multivariate analysis that can be
used to linearly combine several measures in order to perform the
best discrimination between two functional classes of sequences.
It can also serve to identify the most significant measure for a
given discrimination problem. Building on a suggestion by
Fickett (16), Solovyev and collaborators used a linear
discriminant function to combine information about significant
preferences of oligonucleotides in DNA sequences of different
function (5′, internal, 3′ exons). The approach is implemented in
the HEXON and FEX programs (50). In FGENEH (59), they then
apply dynamic programming (see below) to predict optimal gene
models from the list of potential exons. HEXON and FGENEH
performances are listed in Table 2.

Decision tree

MORGAN (60), an integrated system for finding genes, uses a
variety of techniques, the most distinctive of which is a ‘decision
tree’ algorithm. Well established machine learning techniques,
decision tree classifiers have been introduced by Salzberg (61) for
solving the simpler problem of discriminating coding and
non-coding DNA. The internal nodes of a decision tree are
property values that are tested for each sub sequence passed to the
tree. Properties can be various coding measures (e.g., hexamer
frequency) or signal strengths. The bottom nodes (leaves) of the
tree contains class labels to be finally associated with the sub
sequence. Once classified, the various components are assembled
into an optimal gene model using a dynamic programming
approach (see below). MORGAN performances (kindly
communicated by Dr Salzberg prior to publication) are given in
Table 2.

Dynamic programming

Briefly, the dynamic programming algorithm (reviewed in 62) is
a well established recursive procedure for finding the optimal
(e.g., minimal cost or top scoring) pathway among a series of
weighted steps. GeneParser (63,64) uses coding measures and
signal strengths to compute scores for all subintervals in the test
sequence. A neural network is first used to combine the various
measures into the log-likelihood ratio for each subinterval to
exactly represent an intron or exon. A dynamic programming
approach is then used to find the optimal combination of introns
and exons. Ranked sub optimal solutions can also be generated by
the program. The performances of GeneParser are listed in
Table 2. Gelfand and Roytberg (65) have reviewed the use of

dynamic programming in gene prediction, and suggested ‘vector
dynamic programming’ to combine multiple exon quality indices
without the time-consuming training of a neural network. Those
ideas have been implemented in CASSANDRA, a program to
predict protein-coding segments, and the experimental gene
structure prediction program GREAT (4). The GENVIEW
system (66) is again based on the prediction of spliceable ORFs
ranked by the strength of their splice signal and their coding
potential (‘in phase’ hexamer measure). The best gene structure
is then constructed using dynamic programming to sift through
the numerous possible exon assemblies. Finally, the gene
assembly program GAP III also uses dynamic programming (as
well as heuristics) to construct optimal gene models from the
candidate exons predicted by GRAIL II (67). The performances
of the GRAIL II/GAP system are listed in Table 2.

Markov models

Biological sequences can be modeled as the output of a stochastic
process in which the probability for a given nucleotide to occur
at position p depends on the nucleotide occupying the k previous
positions. Such a representation is called a k-order Markov
model. Different functional domains of a sequence (e.g., coding
versus non-coding regions) exhibiting different statistical
properties (e.g., dinucleotide frequency or 3-periodicity) will
correspond to different Markov models. Parsing a natural
biological sequence into non-coding versus coding region, thus
simply consists in determining if a given region is more likely to
be generated by the coding versus the non-coding Markov models
(previously built using training sets). Such a procedure is the basis
for GenMark (68), an efficient program for finding genes in
bacterial genomes. Given the more complex structure of
vertebrate genes, many Markov models are needed to capture the
information within exons, introns, intergenic regions, splice
junctions and other 5′ and 3′ signals. It then becomes more
convenient to represent the sequence as the output of an abstract
process that progresses through a series of discrete states some of
which are ‘hidden’ from the observer. This is referred to as the
Hidden Markov Model (HMM) approach. HMMs, and their use
in computational biology, have already been reviewed (69).
ECOPARSE (70), a gene finder for Escherichia coli, introduced
the use of HMMs in gene recognition. The VEIL program (71)
uses an HMM system for segmenting anonymous vertebrate
sequences into exons, introns and intergenic regions. At a further
level of abstraction, Generalized Hidden Markov Models
(GHMMs) are HMMs where states are arbitrary sub models (e.g.,
neural networks, position weight matrices, etc.) outputting
variable length sequences (i.e., ‘states’ can have variable
durations). GENIE (72) introduced GHMMs in the context of gene
structure prediction. More recently, Burge and Karlin (73)
introduced a general probabilistic model of gene structure with a
similar architecture, implemented in GENSCAN. In contrast with
previous works, the authors of GENSCAN devoted a lot of
attention to the optimization of the lower level modules performing
the recognition of the basic signals (e.g., transcriptional,
translational and splicing signals), and incorporated the influence
of (C+G) content. GENSCAN explores possible gene models on
both DNA strands simultaneously and is capable of parsing
sequences containing multiple (eventually embedded) genes. The
performances of VEIL, GENIE and GENSCAN are listed in
Table 2. VEIL, GENIE and GENSCAN also use a variation (74)
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of the dynamic programming algorithm to find the most likely
gene structure by optimally aligning the sequence to their
respective HMM systems.

‘Spliced alignment’

The ‘bed of Procrustes’ or ‘procrustean bed’, proverbial for
‘arbitrarily forcing someone or something to fit into an unnatural
scheme or pattern’, apparently inspired an original algorithm by
Gelfand et al. (74). Their program PROCRUSTES provides an
integrated procedure to use protein (and cDNA) similarity
information to identify genes and predict gene structure. Given a
genomic DNA sequence, the program first generates a set of
candidate exons. These candidates consists of all sub sequences
between candidate acceptor and donor splice sites, with very little
filtration to minimize the risk of losing true exons.
PROCRUSTES then considers all possible chains of candidate
exons and finds a chain with the maximum global similarity to the
target protein. Even though the number of exon assemblies is
huge, the ‘spliced alignment algorithm’ is fast enough to process
large genomic fragments (up to 180 000 nucleotides) containing
multi-exon genes (>30 exons). If a protein sufficiently similar to
the one encoded in the analyzed sequence is available, the
highest-scoring exon assembly very often represents the correct
exon–intron structure. According to the original study (75), the
average correlation coefficients for non-primate mammalian,
bird, plant and fungal targets are, respectively, 98, 96, 95 and
93%. For target proteins with similarity scores above 60% the
average correlation coefficient is 99%. The basic idea of using
protein homology as a guide to predict exon structure was also
proposed by Rogozin et al. (76) and implemented in ORFgene
(Table 1). This program lacks the very efficient spliced alignment
algorithm that characterizes PROCRUSTES.

DISCUSSION

Most of the programs and methods that have been presented here
share a number of limitations. They will be briefly discussed
below.

Current methods only detect protein coding genes

The performances listed in Table 2 correspond to the prediction
of protein coding regions, that is: (i) the coding moiety of the first
exon (from ATG to the first donor splice site); (ii) the internal
coding exons; and (iii) the coding moiety of the last coding exon
(from the acceptor splice site to a stop codon. No reliable methods
are presently available for predicting the non-coding part of
genes, i.e., the 5′ and 3′ UTRs. As a consequence, non-coding
RNA genes, such as XIST (77), H19 (78), IPW (79) and the
newly discovered NTT (80) would have been totally transparent
to the current gene prediction programs. In the absence of a
method to identify them, it is impossible to estimate how many
genes of this type are hidden in the human genome, although they
might constitute an essential regulatory component of its
expression. XIST, H19 and IPW are all known to play a key role
in transcription inactivation and/or imprinting.

By most statistical measures used to date, non-coding parts of
genes do not differ much from intron or intergenic sequences.
With no statistical measure at hand, we are left to look for the
sequence signals supposed to bracket transcription units: the core
promoter region in 5′, and the polyadenylation site in 3′.

Only two core promoter elements are located at a fixed distance
from the transcription start site: an (A+T)-rich sequence (the
so-called TATA-box) positioned some 30 bp upstream (reviewed
in 81–83), and the initiator element (Inr, reviewed in 84).
Between 70 and 80% of promoters contain a TATA box. Given
their variability and ubiquity, those signals do not contain enough
information to specifically locate the 5′ end of genes. The
difficulty of accurately predicting the location of vertebrate
promoters has been well documented in recent reviews
(2,85–87).

At the other extreme, the AATAAA polyadenylation signal is
supposed to end transcription. This short signal is again
ubiquitous and does not contain enough information by itself to
specifically locate the 3′ extremity of genes. Moreover, we found
it missing from 54% of the 3′ end of transcripts, as estimated from
our survey (Audic, Gautheret, Seilhamer and Claverie,
unpublished) of all Merck/Washington University 3′ EST
sequences (36,37). The fraction is approximately the same in
complete mRNA sequences in GenBank. In the absence of the
canonical AATAAA signal, no variations over the consensus
(with the possible exception of ATTAAA) stand out in a
statistically significant manner. Thus, one can anticipate that
∼50% of vertebrate genes will have a particularly difficult 3′ end
to map with precision by lack of a clear signal.

In summary, without the help of a strong statistical bias as
exhibited by coding regions, a pure ‘signal’ analysis of vertebrate
genomic sequences is unable to identify non-protein coding
genes, or the precise 5′ and 3′ extremities of protein coding genes.
Non-coding RNA genes, or the 3′ UTRs of regular protein genes
can only be located by similarity searches if they correspond to
an EST. Cases where the current programs do not predict any
exons upstream from a perfect match with an EST are, in fact,
suggestive of non-coding RNA genes.

Finally, efficient programs to detect tRNA genes (88), or any
family of RNA genes (89) with a specific sequence or secondary
structure signature have been available for some time.

Most current methods only detect one typical gene

With the exception of the recent GENSCAN (and the interactive
XGRAIL system), all gene structure prediction programs assume
that the input genomic sequence contains a single complete gene.
The programs enforce solutions including a gene ‘beginning’ and
a gene ‘end’. The predictions made on sequences containing a
partial gene, or multiple genes, do not usually make sense.
Single-exon genes are also not well predicted by most programs.
GENSCAN incorporates the concept of partial genes, multiple
genes and single-exon genes in its probabilistic model of gene
structures. The model is also ‘double-stranded’, i.e., potential genes
occurring on both DNA strands are analyzed simultaneously and
have to be compatible. However, at the moment, different genes
(on the same or opposite strand) must be separated by an
‘intergenic region’. Thus, cases of overlapping transcription units
such as nested genes (13), or a gene embedded in an intron of
another gene (13), are not yet considered by the program.
Fortunately, those situations are probably rare in vertebrate
genomes. A much more common situation, alternatively spliced
transcripts, is not yet adequately handled by any program.

Another serious limitation is that all programs have been
trained (and their performance assessed) on a rather special subset
of vertebrate genes, with relatively few exons spanning no more
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than a few kilobases. In the reference test set of Burset and Guigo
(5), the average gene length is 5.1 kb, and the average number of
exons is 4.6. It is thus feared that the accuracy of the current
programs (Table 2) will be considerably lower when analyzing
contigs of hundreds of kilobases now currently generated in
genome sequencing laboratories. An independent evaluation (26)
of the GRAIL software on larger (15–101 kb) sequences
confirmed a significant, but not alarming, decrease in perform-
ance. More recently, Ansari-Lari et al. (90) have systematically
combined experimental tools (RT-PCR and cDNA sequencing),
various gene prediction methods (GRAIL II, FGENEH and
GeneID), and similarity searches to analyze a 223 kb genomic
sequence in the CD4 region (chromosome 12p13). The most
important parameter, the fraction of totally missed exons (ME in
Table 2) was established at 22% for Grail II and FGENEH, and
at 54% for GeneID. False positive rates were of the order of 17,
12 and 27% for Grail II, FGENEH and GeneID, respectively.
Except for the large fraction of missed exons cited for GeneID,
these numbers are not dramatically worse than those listed in
Table 2. On an a posteriori analysis of a 117 kb fragment of the
same genomic sequence (91), more than 60 of the known exons
in the region overlapped GENSCAN predictions (100% exact for
internal exons), and the rate of false positives was close to zero
(73). At the level of accuracy now reached, the interpretation of
‘false positives’ (i.e., exons predicted but not experimentally
validated) becomes difficult, as they may correspond to pseudo
genes or true genes not yet experimentally identified.

Finally, it is important to notice that, out of 570 test genes, 243
(43%) were perfectly predicted at the coding level by GENSCAN
(73). This is a very encouraging result, demonstrating that it is
indeed possible to predict multi-exon gene structures using an
entirely automated procedure, that is to automatically ‘annotate’
anonymous genomic sequences. Some successes are truly
impressive such as the perfect assembly of the 22 coding exons
of the human gastric ATPase (GenBank accession no. J05451).
On the other hand, predictions of gene boundaries are still
inaccurate. For instance, while GENSCAN predicted 100% of the
internal exons in the 117 kb CD4 regions (91), none of the six
genes found in the region were correctly mapped from beginning
to end, and two were fused together (73). A specific web site (the
‘Banbury Cross’, named after a Banbury meeting where the
concept originated) is now devoted to the study of the
performance of gene finding algorithms in the context of very
long genomic sequences (see Table 2).

All current methods are conservative

A more conceptual limitation of current gene/exon prediction
methods is their implicit conservatism. Indeed, homology-based
methods such as simple database similarity searches (29,30), or
the more integrated PROCRUSTES program (75), are by
construction unable to discover ‘new’ genes, i.e., with no
significant resemblance to previously encountered ones. To a
lesser extent, this is also true of all other gene prediction methods.
All the programs listed in Tables 1 and 2 do use ‘training’ sets of
‘typical genes’ to optimize their signal or coding region detection
modules, as well as to determine the weight associated with the
assembly of the various features (e.g., explicit probabilities in
HMM models). Thus, ‘detectable’ genes are more likely to have
a TATA box, coding exons exhibiting the usual hexamer
frequency, average intron and exon sizes, a single 5′ UTR and 3′

UTR exon, and a consensus polyadenylation signal.
Unfortunately, many interesting genes do not have such an ideal
architecture. Evolutionarily ‘recent’ vertebrate genes, i.e., coding
for proteins with no detectable homologues in other phyla (i.e.,
invertebrates) may represent ∼50% of all human genes (31,32).
Many of these genes seem to evolve rapidly, eventually so fast
that human and mouse homologous sequences do not
cross-hybridize (see 15,40,92 and references therein). Although
there has been no systematic study performed, genes that have
undergone rapid evolution appear to be more difficult to predict
than more conserved ones (40). Possibly fast evolving genes are
too variable to acquire the characteristic word usage that
exon/gene finder programs are trained to expect. Since these
genes, by definition of their recent ancestry, cannot be found by
similarity search against the complete genomes of bacteria, yeast
or C.elegans, they are more likely to be missed altogether. The
difficulty for current programs to locate genes in sequences with
low (G+C) content might also be related to a higher rate of
evolution in these genomic regions.

For these reasons, trying to improve the performances of the
gene prediction programs by having them integrate similarity
search information might not be so wise in the long run.
Nevertheless, this trend has been followed by the authors of
GeneID (5), GeneParser (64), FGENEHB (93), Genie (94) and
GRAIL (95). The gain in accuracy on the standard benchmark set
(5) is of the order of 20%, but this obviously depends on the
fraction of the test set with homologues in the databases. For the
sake of clarity, and to objectively evaluate our progress in the
interpretation of genomic data, it would be preferable to keep the
similarity information separate. There is, beyond any practical
consideration, a fundamental interest in being able to decipher the
genomic information on the basis of ‘first principles’, i.e., by
detecting all the biologically significant signals hidden in the
DNA sequence. Designing even more ambitious methods that do
not involve a ‘training set’ is still worthwhile in this context, and
significant progress has recently been made in this direction for
the analysis of new bacterial genomes (Audic et al., manuscript
submitted). From a practical point of view, it is indeed advisable
to always use a program like GENSCAN (or any program
recognizing genes from their general properties) in combination
with methods explicitly taking advantage of homology
information such as PROCRUSTES, or plain database similarity
searches against protein or EST databases.

The decision on which gene prediction program to use, cannot
only be based on the performances listed in Table 2. Two other
criteria, (i) the type and quality of sequence data at our disposal,
and (ii) the type of access offered by the program, are important.
Two main types of sequence data can be distinguished: well
polished sequences of tens to hundreds of contiguous nucleotides,
or genome survey data, i.e., resulting from a low coverage
shotgun sequencing protocol (96,97). In the latter case, no more
than a single exon is expected to be found in each piece of
contiguous sequence. Simple exon finders, such as GRAIL I/II,
HEXON, and MZEF are well suited for this type of data, as well
as BLASTN (98) searches against the EST databases, and
BLASTX (30) searches against the protein databases. In the
special case of exon trapping data (99,100), a method not taking
into account splice site information should be used, such as
GRAIL I. At the other extreme, when large contigs are available,
GENSCAN seems to be the best program currently available.
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In case sequence data are too confidential to be transmitted over
the Internet, a gene prediction program has to be installed on a
local computer, and the analysis run in-house. Table 1 lists the
sites where program source codes or executable files are available
free of charge.

In all instances, an adequate filtering of the most abundant
repeats [SINES, LINES, MAR, etc. (39)] should precede the
search for exons or genes to maintain the signal/noise ratio to an
acceptable level, especially if one wants to take advantage of EST
similarity searches (42,43).

Future directions

Practically all coding nucleotides are now detected by the most
advanced software such as MZEF and GENSCAN, according to
their published performances. The practical problem of detecting
exons in anonymous genomic sequence can thus be considered to
be solved, in the sense that cognate cDNA clones are extremely
likely to be detected by PCR primers or probes designed after the
predictions. On the positive side, in more than 40% of (easy)
cases, the protein products deduced from the predicted exon
assemblies are entirely correct. In the best cases, if the amino-acid
sequence reveals a specific motif, a putative function can even be
assigned automatically to a newly identified gene. On the down
side, 60% of the predicted proteins are wrong, and nearly 100%
of the predicted gene structures have incorrect 5′ or 3′ boundaries.
Thus, the full definition of the transcription unit (and of its variant
through alternative processing) still requires some non-trivial
experimental work. In that sense, the problem of automatically
annotating genomic sequences to a level comparable to GenBank
is far from being solved, even for typical protein coding genes.
Given that most 3′ extremities of genes will eventually be mapped
by ESTs, achieving a significant improvement on computer
methods for the detection of vertebrate promoters, and thus the 5′
end of genes, is now the key to the development of the next
generation of gene identification programs.
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