Profile Method

PROFILE METHOD, [M. Gribskov et al., '90]

Location		S	Sec	lue	nc	е		Protein
in Seq.	1	2	3	4	5	6	7	Name
14	G	V	S	A	S	A	V	Ka RbtR
32	G	V	S	E	M	т	Ι	Ec DeoR
33	G	V	S	P	G	\mathbf{T}	I	Ec RpoD
76	G	A	G	I	Α	\mathbf{T}	I	Ec TrpR
178	G	C	S	R	Ε	т	V	Ec CAP
205	C	L	S	P	S	R	L	Ec AraC
210	C	L	S	P	S	R	L	St AraC
13	G	V	N	K	Ε	Т	I	Br MerR

FREQUENCY TABLE

	А	C	D	Ε	F	G	Н	I	K	L	M	N	P	Q	R	S	Т	V	W	Y
1	0	2	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	4	0	0
3	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	6	0	0	0	0
4	1	0	0	1	0	0	0	1	1	0	0	0	3	0	1	0	0	0	0	0
5	1	0	0	2	0	1	0	0	0	0	1	0	0	0	0	3	0	0	0	0
6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	5	0	0	0
7	0	0	0	0	0	0	0	4	0	2	0	0	0	0	0	0	0	2	0	0

Profile Method

FREQUENCY TABLE

	A	C	D	Ε	F	G	Н	I	K	L	М	N	P	Q	R	S	Т	V	W	Y
1	0	2	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	4	0	0
3	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	6	0	0	0	0
4	1	0	0	1	0	0	0	1	1	0	0	0	3	0	1	0	0	0	0	0
5	1	0	0	2	0	1	0	0	0	0	1	0	0	0	0	3	0	0	0	0
6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	5	0	0	0
7	0	0	0	0	0	0	0	4	0	2	0	0	0	0	0	0	0	2	0	0

WEIGHT MATRIX

	A	C	E	G	I	K	L	M	N	P	R	S
1	0	108	0	101	0	0	0	0	0	0	0	0
2	21	78	0	0	0	0	44	0	0	0	0	0
3	0	0	0	23	0	0	0	0	46	0	0	102
4	21	0	32	0	38	32	0	0	0	86	39	0
5	21	0	62	23	0	0	0	74	0	0	0	72
6	21	0	0	0	0	0	0	0	0	0	69	0
7	0	0	0	0	98	0	44	0	0	0	0	0

$$Weight[i, AA] = \log\left(\frac{Freq[i, AA]}{p[AA] \cdot N}\right) \cdot 100$$

8

Profile Method

WEIGHT MATRIX

	A	C	E	G	I	K	L	M	N	P	R	S
1	0	108	0	101	0	0	0	0	0	0	0	0
2	21	78	0	0	0	0	44	0	0	0	0	0
3	0	0	0	23	0	0	0	0	46	0	0	102
4	21	0	32	0	38	32	0	0	0	86	39	0
5	21	0	62	23	0	0	0	74	0	0	0	72
6	21	0	0	0	0	0	0	0	0	0	69	0
7	0	0	0	0	98	0	44	0	0	0	0	0

Given the following protein sequence:

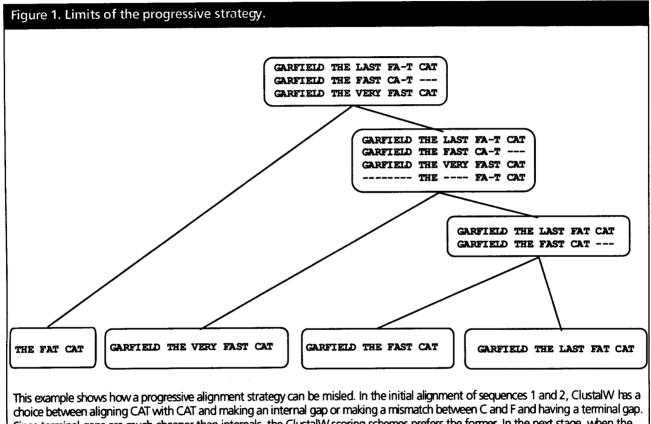
M T E D L F G D L Q D D T I L A H L D N
P A E D T S R F P A L L A E L N D L L R
G E L S R L G V D P A H S L E I V V A I
C K H L G G G Q V Y I P R G Q A L D S L
I R D L R I W N D F N G R N V S E L T T
R Y G V T F N T V Y K A I R R M R R L K

9

Multiple Sequence Alignments (MSA)

- Choice of Scoring Function
 - Global vs local
 - Gap penalties
 - Substitution matrices
 - Incorporating other information
 - Statistical Significance
- Computational Issues
 - Exact/heuristic/approximate algorithms for optimal MSA
 - Progressive/Iterative/DP
 - Iterative: Stochastic/Non-stochastic/Consistency-based
- Evaluating MSAs
 - Choice of good test sets or benchmarks (BAliBASE)
 - How to decide thresholds for good/bad alignments

Progressive MSA: CLUSTALW



choice between aligning CAT with CAT and making an internal gap or making a mismatch between C and F and having a terminal gap. Since terminal gaps are much cheaper than internals, the ClustalW scoring schemes prefers the former. In the next stage, when the extra sequence is added, it turns out that properly aligning the two CATs in the previous stage would have led to a better scori on g sums-of-pairs multiple alignment.

C. Notredame, Pharmacogenomics, 3(1), 2002.

Software for MSA

KEVIEW

Table 1. Some re	cent and less recent available me	thods for MSAs.	
MSA	Exact	http://www.ibc.wustl.edu/ibc/msa.html	[28]
OMA	Iterative DCA	http://bibiserv.techfak.uni-biefield.de/oma	[61 <u>]</u>
MultAlin	Progressive	http://www.toulouse.inra.fr/multalin.html	[41]
ComAlign	Consistency-based	http://www.daimi.au.df/~ ocaprani	[75]
Praline	Iterative/progressive	jhering@nimr.mrc.ac.uk	[48]
Prrp	Iterative/Stochastic	ftp://ftp.genome.ad.jp/pub/genome/saitama-cc/	[47]
HMMER	Iterative/Stochastic/HMM	http://hmmer.wustl.edu/	[68]
GA	Iterative/Stochastic/GA	czhang@watnow.uwaterloo.ca	[52]

C. Notredame, Pharmacogenomics, 3(1), 2002.

MSA: Conclusions

- Very important
 - Phylogenetic analyses
 - Identify members of a family
 - Protein structure prediction
- No perfect methods
- Popular
 - Progressive methods: CLUSTALW
 - Recent interesting ones: Prrp, SAGA, DiAlign, T-Coffee
- Review of Methods [C. Notredame, Pharmacogenomics, 3(1), 2002]
 - CLUSTALW works reasonably well, in general
 - DiAlign is better for sequences with long insertions & deletions (indels)
 - T-Coffee is best available method

CpG Islands

- Regions in DNA sequences with increased occurrences of substring "CG"
- Rare: typically C gets methylated and then mutated into a T.
- Often around promoter or "start" regions of genes
- Few hundred to a few thousand bases long

Problem 1:

- Input: Small sequence S
- Output: Is S from a CpG island?
 - Build Markov models: M+ and M —
 - Then compare

Markov Models

+	A	С	G	т
A	0.180	0.274	0.426	0.120
С	0.171	0.368	0.274	0.188
G	0.161	0.339	0.375	0.125
Т	0.079	0.355	0.384	0.182

_	A	С	G	Т
A	0.300	0.205	0.285	0.210
С	0.322	0.298	0.078	0.302
G	0.248	0.246	0.298	0.208
Т	0.177	0.239	0.292	0.292

How to distinguish?

Compute

$$S(x) = \log \left(\frac{P(x \mid M +)}{P(x \mid M -)} \right) = \sum_{i=1}^{L} \log \left(\frac{p_{x(i-1)xi}}{m_{x(i-1)xi}} \right) = \sum_{i=1}^{L} r_{x(i-1)xi}$$

r=p/m	Α	С	G	Т
A	-0.740	0.419	0.580	-0.803
С	-0.913	0.302	1.812	-0.685
G	-0.624	0.461	0.331	-0.730
Т	-1.169	0.573	0.393	-0.679

Score(GCAC)

$$= .461 - .913 + .419$$

GCAC not from CpG island.

Score(GCTC)

$$= .461 - .685 + .573$$

GCTC from CpG island.

Problem 1:

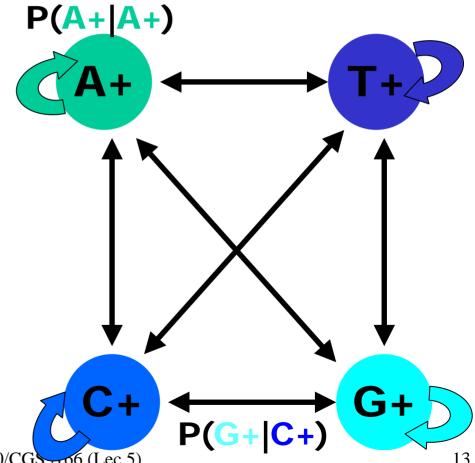
- Input: Small sequence S
- Output: Is S from a CpG island?
 - Build Markov Models: M+ & M-
 - Then compare

Problem 2:

- Input: Long sequence S
- Output: Identify the CpG islands in S.
 - Markov models are inadequate.
 - Need Hidden Markov Models.

Markov Models

+	A	С	G	Т
A	0.180	0.274	0.426	0.120
С	0.171	0.368	0.274	0.188
G	0.161	0.339	0.375	0.125
Т	0.079	0.355	0.384	0.182

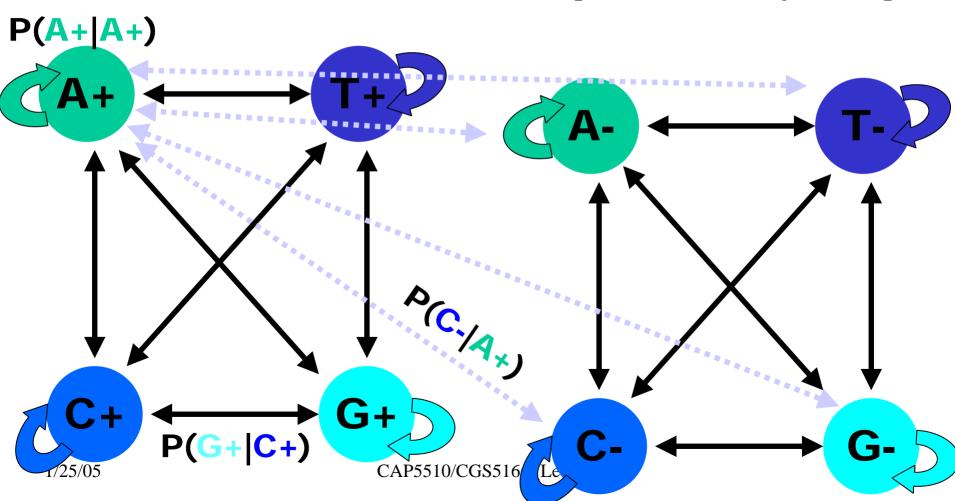


1/25/05

CAP5510/CGS-106 (Lec 5)

CpG Island + in an ocean of – First order Hidden Markov Model

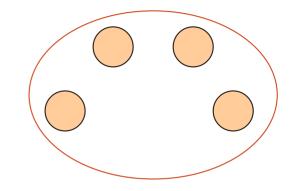
MM=16, HMM= 64 transition probabilities (adjacent bp)

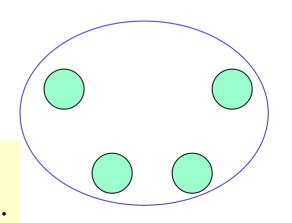


Hidden Markov Model (HMM)

- States
- Transitions
- Transition Probabilities
- Emissions
- Emission Probabilities

Answer: The <u>path</u> through the model is hidden since there are many valid paths.



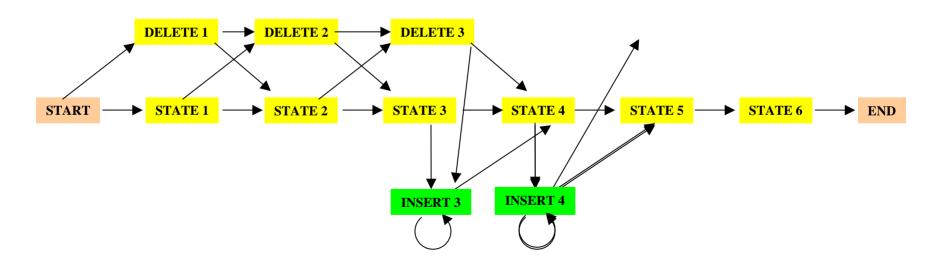


How to Solve Problem 2?

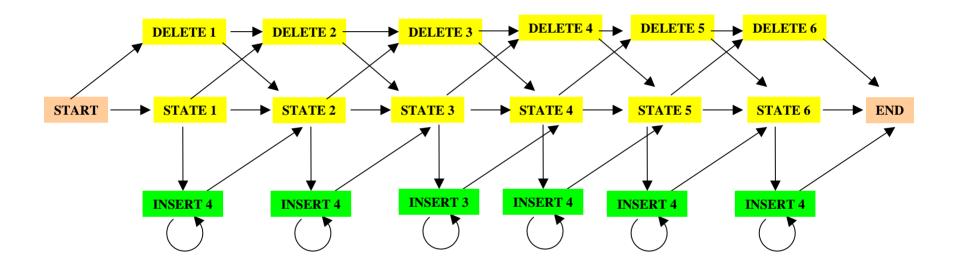
Solve the following problem:
 Input: Hidden Markov Model M,
 parameters ⊕, emitted sequence S
 Output: Most Probable Path ∏
 How: Viterbi's Algorithm (Dynamic Programming)
 Define ∏[i,j] = MPP for first j characters of S ending in state i
 Define P[i,j] = Probability of ∏[i,j]
 Compute state i with largest P[i,j].

Profile HMMs with InDels

- Insertions
- Deletions
- Insertions & Deletions

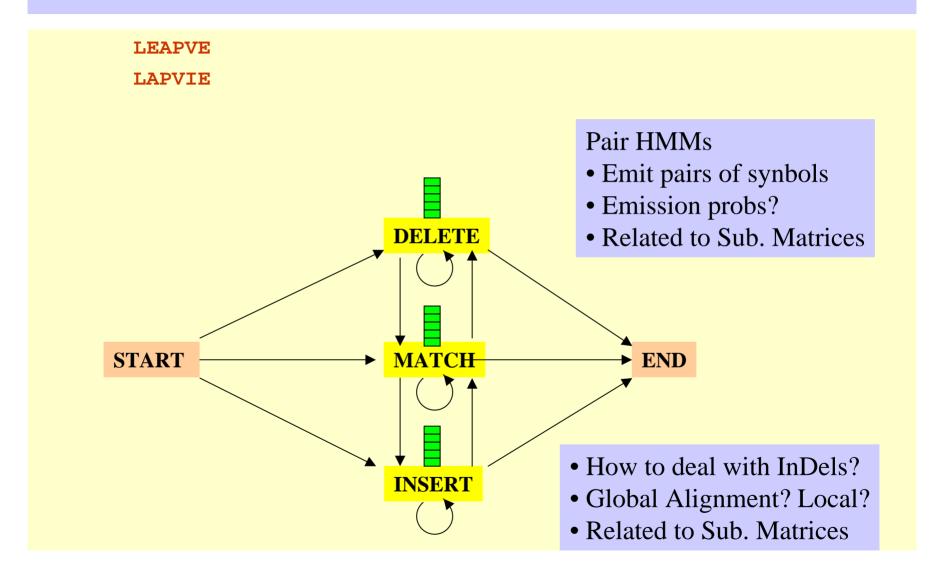


Profile HMMs with InDels



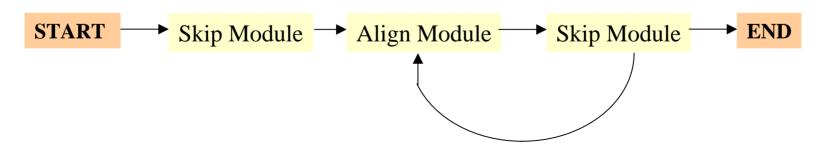
Missing transitions from DELETE j to INSERT j and from INSERT j to DELETE j+1.

How to model Pairwise Sequence Alignment



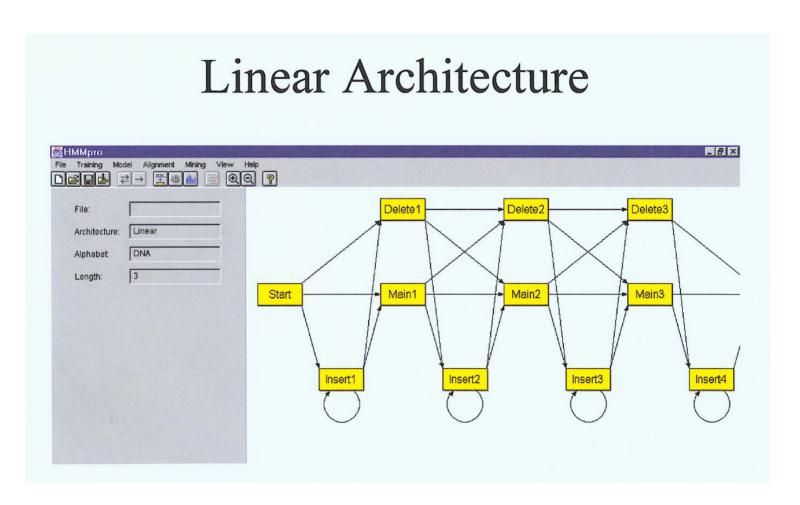
How to model Pairwise Local Alignments?

How to model Pairwise Local Alignments with gaps?

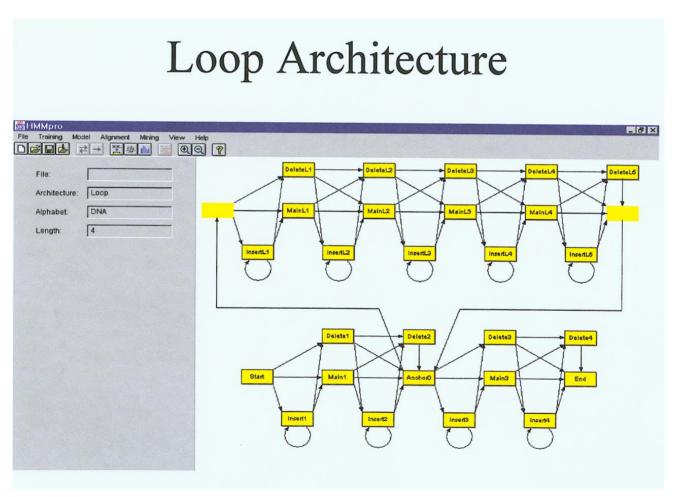


1/25/05

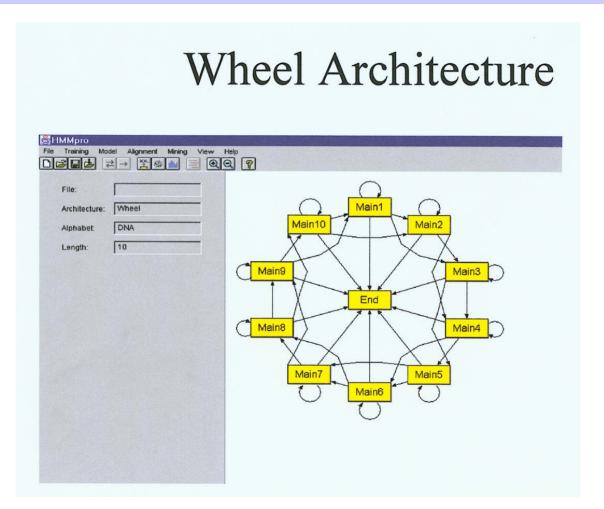
Standard HMM architectures



Standard HMM architectures



Standard HMM architectures



Profile HMMs from Multiple Alignments

```
HBA_HUMAN VGA--HAGEY
```

HBB_HUMAN V---NVDEV

MYG_PHYCA VEA--DVAGH

GLB3_CHITP VKG----D

GLB5_PETMA VYS--TYETS

LGB2 LUPLU FNA--NIPKH

GLB1_GLYDI IAGADNGAGV

Construct Profile HMM from above multiple alignment.

HMM for Sequence Alignment

A. Sequence alignment

N • F L S N • F L S N K Y L T Q • W - T

RED POSITION REPRESENTS ALIGNMENT IN COLUMN GREEN POSITION REPRESENTS INSERT IN COLUMN PURPLE POSITION REPRESENTS DELETE IN COLUMN

B. Hidden Markov model for sequence alignment

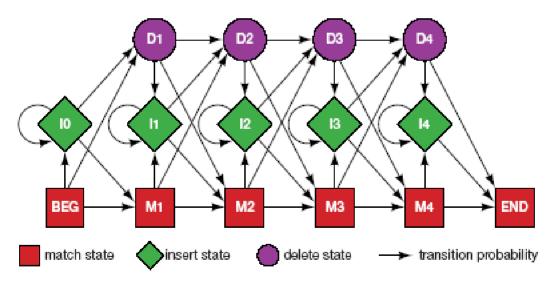


FIGURE 5.16. Relationship between the sequence alignment and the hidden Markov model of the alignment (Krogh et al. 1994). This particular form for the HMM was chosen to represent the sequence, structural, and functional variation expected in proteins. The model accommodates the identities, mismatches, insertions, and deletions expected in a group of related proteins. (A) A section of an msa. The illustration shows the columns generated in an msa. Each column may include matches and mismatches (red positions), insertions (green positions), and deletions (purple positions). (B) The HMM. Each column in the model represents the possibility of a match, insert, or delete in each column of the alignment in A. The HMM is a probabilistic representation of a section of the msa. Sequences can be generated from the HMM by starting at the beginning state labeled BEG and then by following

Problem 3: LIKELIHOOD QUESTION

- Input: Sequence S, model M, state i
- Output: Compute the probability of reaching state i with sequence S using model M
 - Backward Algorithm (DP)

Problem 4: LIKELIHOOD QUESTION

- Input: Sequence S, model M
- Output: Compute the probability that S was emitted by model M
 - Forward Algorithm (DP)

Problem 5: LEARNING QUESTION

- Input: model structure M, Training Sequence S
- Output: Compute the parameters •
- Criteria: ML criterion
 - maximize $P(S \mid M, \Theta)$ HOW???

Problem 6: **DESIGN QUESTION**

- Input: Training Sequence S
- Output: Choose model structure M, and compute the parameters Θ
 - No reasonable solution
 - Standard models to pick from

Iterative Solution to the LEARNING QUESTION (Problem 5)

- Pick initial values for parameters Θ_0
- · Repeat

```
Run training set S on model M

Count \# of times transition i \Rightarrow j is made

Count \# of times letter x is emitted from state i

Update parameters \Theta
```

<u>Until</u> (some stopping condition)

Entropy

Entropy measures the variability observed in given data.

- Entropy is useful in multiple alignments & profiles.
- Entropy is max when uncertainty is max.

$$E = -\sum_{c} p_c \log p_c$$

G-Protein Couple Receptors

- Transmembrane proteins with 7 α -helices and 6 loops; many subfamilies
- Highly variable: 200-1200 aa in length, some have only 20% identity.
- [Baldi & Chauvin, '94] HMM for GPCRs
- HMM constructed with 430 match states (avg length of sequences); Training: with 142 sequences, 12 iterations

GPCR - Analysis

Compute main state entropy values

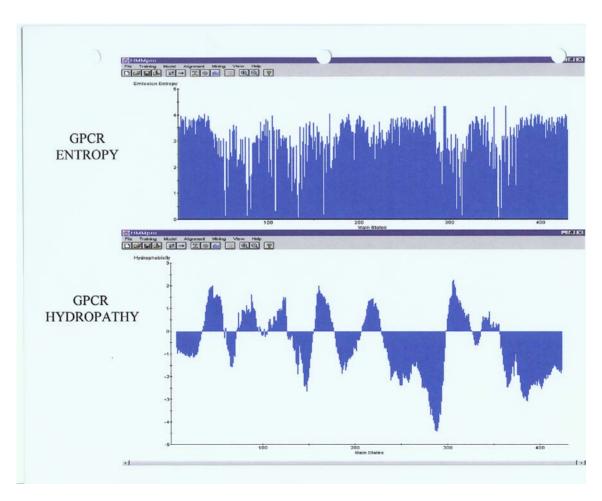
For every sequence from test set (142) & random set (1600) & all

SWISS-PROT proteins
- Compute the negative \log of probability of the invost probable path π

 \boldsymbol{a}

$$Score(S) = -\log(P(\pi \mid S, M))$$

GPCR Analysis



Entropy

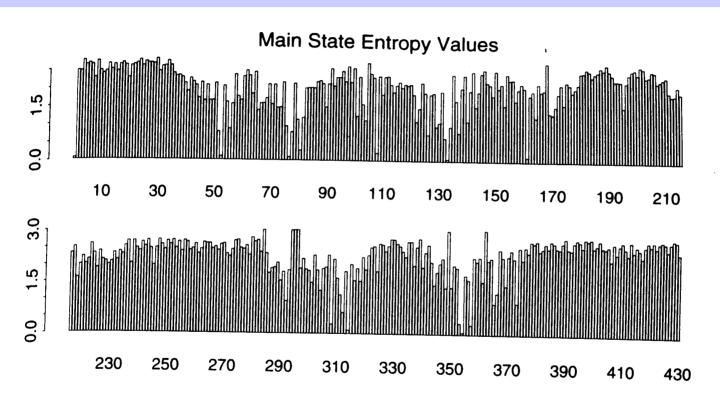


Figure 8.1: Entropy Profile of the Emission Probability Distributions Associated with the Main States of the HMM After 12 Cycles of Training.

GPCR Analysis (Cont'd)

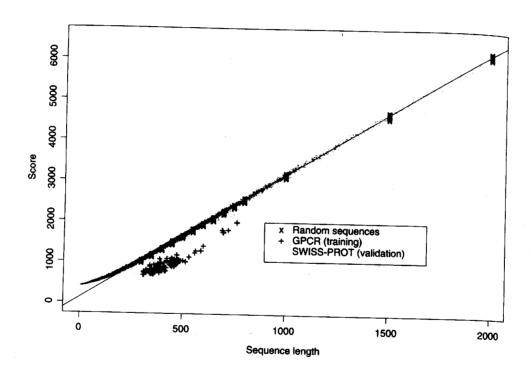


Figure 8.2: Scores (Negative Log-likelihoods of Optimal Viterbi Paths). Represented sequences consist of 142 GPCR training sequences, all sequences from the SWISS-PROT database of length less than or equal to 2000, and 220 randomly generated sequences with same average composition as the GPCRs of length 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800 (20 at each length). The regression line was obtained from the 220 random sequences. The horizontal distances in the histogram correspond to malized scores (6).

Applications of HMM for GPCR

- Bacteriorhodopsin
 - Transmembrane protein with 7 domains
 - But it is not a GPCR
 - Compute score and discover that it is close to the regression line. Hence not a GPCR.
- Thyrotropin receptor precursors
 - All have long initial loop on INSERT STATE 20.
 - Also clustering possible based on distance to regression line.

HMMs - Advantages

- Sound statistical foundations
- Efficient learning algorithms
- Consistent treatment for insert/delete penalties for alignments in the form of locally learnable probabilities
- Capable of handling inputs of variable length
- Can be built in a modular & hierarchical fashion; can be combined into libraries.
- Wide variety of applications: Multiple Alignment, Data mining & classification, Structural Analysis, Pattern discovery, Gene prediction.

HMMs – Disadvantages

- Large # of parameters.
- · Cannot express dependencies & correlations between hidden states.