Profile HMMs

PROFILE METHOD, [M. Gribskov et al., '90]

Location	Sequence						Protein	
in Seq.	1	2	3	4	5	6		Name
14	G	V	S	A	S	Α	1	Ka RbtR
32	G	v	s	Е	М	т		Ec DeoR
33	G	v	S	Ρ	G	т		Ec RpoD
76	G	A	G	I	А	Т		Ec TrpR
178	G	C	S	R	Е	т		Ec CAP
205	C	L	S	Ρ	S	R		Ec AraC
210	C	L	S	Ρ	s	R		St AraC
13	G	V	Ν	K	Е	т		Br MerR

Profile HMMs with InDels

- Insertions
- Deletions
- Insertions & Deletions

Profile HMMs with InDels

Missing transitions from DELETE j to INSERT j and from INSERT j to DELETE j+1.

Profile HMMs for MSA

How to Solve Problem 2?

- Solve the following problem: Input: Hidden Markov Model M, parameters Θ , emitted sequence S **Output:** Most Probable Path Π How: Viterbi's Algorithm (Dynamic Programming) Define $\prod[i,j] = MPP$ for first j characters of S ending in state i Define $P[i,j] = Probability of \Pi[i,j]$
 - <u>Compute</u> state i with largest P[i,j].

Hidden Markov Model (HMM)

- States
- Transitions
- Transition Probabilities
- Emissions
- Emission Probabilities

• What is <u>hidden</u> about HMMs?

Answer: The <u>path</u> through the model is hidden since there are many valid paths.

Problem 5: LEARNING QUESTION

- Input: model structure M, Training Sequence S
- Output: Compute the parameters Θ
- Criteria: ML criterion
 - maximize $P(S | M, \Theta)$ HOW???

Problem 6: DESIGN QUESTION

- Input: Training Sequence S
- Output: Choose model structure M, and compute the parameters Θ
 - No reasonable solution
 - Standard models to pick from

Iterative Solution to the LEARNING QUESTION (Problem 5)

- Pick initial values for parameters Θ_0
- <u>Repeat</u>
 - Run training set 5 on model M
 - Count # of times transition i \Rightarrow j is made
 - Count # of times letter x is emitted from state i
 - Update parameters Θ
- <u>Until</u> (some stopping condition)

How to model Pairwise Sequence Alignment

How to model Pairwise Local Alignments?

START → Skip Module → Align Module → Skip Module → END

How to model Pairwise Local Alignments with gaps?

Entropy

 Entropy measures the variability observed in given data.

$$E = -\sum_{c} p_{c} \log p_{c}$$

- Entropy is useful in multiple alignments & profiles.
- Entropy is max when uncertainty is max.

G-Protein Couple Receptors

- Transmembrane proteins with 7 $\alpha\text{-helices}$ and 6 loops; many subfamilies
- Highly variable: 200-1200 aa in length, some have only 20% identity.
- [Baldi & Chauvin, '94] HMM for GPCRs
- HMM constructed with 430 match states (avg length of sequences) ; Training: with 142 sequences, 12 iterations

GPCR - Analysis

Compute main state entropy values

$$H_i = -\sum_a e_{ia} \log e_{ia}$$

- For every sequence from test set (142) & random set (1600) & all SWISS-PROT proteins
 - Compute the negative log of probability of the most probable path π $Score(S) = -\log(P(\pi \mid S, M))$

Entropy

GPCR Analysis

GPCR Analysis (Cont'd)

Figure 8.2: Scores (Negative Log-likelihoods of Optimal Viterbi Paths). Represented sequences consist of 142 GPCR training sequences, all sequences from the SWISS-PROT database of length less than or equal to 2000, and 220 randomly generated sequences with same average composition as the GPCRs of length 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800 (20 at each length). The regression line was obtained from the 220 random sequences. The horizonta³ distances in the histogram correspond to (malized scores (6).

Applications of HMM for GPCR

- Bacteriorhodopsin
 - Transmembrane protein with 7 domains
 - But it is not a GPCR
 - Compute score and discover that it is close to the regression line. Hence not a GPCR.
- Thyrotropin receptor precursors
 - All have long initial loop on INSERT STATE 20.
 - Also clustering possible based on distance to regression line.

HMMs – Advantages

- Sound statistical foundations
- Efficient learning algorithms
- Consistent treatment for insert/delete penalties for alignments in the form of locally learnable probabilities
- Capable of handling inputs of variable length
- Can be built in a modular & hierarchical fashion; can be combined into libraries.
- Wide variety of applications: Multiple Alignment, Data mining & classification, Structural Analysis, Pattern discovery, Gene prediction.

HMMs – Disadvantages

- Large # of parameters.
- Cannot express dependencies & correlations between hidden states.

Prokaryotic Gene Prediction

- Genes: region between start codon <u>ATG</u> and stop codon (<u>TAA</u>, <u>TAG</u>, or <u>TGA</u>). Absence of introns.
- Codon Bias
- Locate Promoter region
- Ribosome Binding site
- Terminator site

Nomenclature

RNA Polymerization occurs 5' to 3'

Nontemplate or Coding Strand

Transcriptional unit and single gene mature mRNA

Transcriptional unit ORF +1 5' Terminator -35 -10 **Promoter RNA-coding region** Transcription start site Start Stop **mRNA** Codon Codon 5' 3' **RBS Protein-coding region RBS** Ribosome 5' untranslated region **3' untranslated region** binding site **3' UTR 5' UTR** Leader Trailer 2/10/05 CAI 3310/COS3100 (Lec 10)

Slide courtesy Prof. Mathee

Prokaryotic Gene Characteristics

DNA PATTERNS IN THE E. coli lexA GENE

	GENE SEQUENCE	PATTERN
l	GAATTCGATAAATCTCTGGTTTATTGTGCAGTTTATGGTT	CTGNNNNNNNNNC AG
47	ТТ ССРРЕНИИССССТИТИТССТВО ПРИ ПРОТОВОЛОВСТВО ПО В СПОСТ	TIGACA
11	CCAA -35 -10 TATACT >	TATAAT > mBMB start
81	TATA TACAC CCAGGGGGGGGGGGAATGAAAGCGTTAACGGCCA	CTGNNNNNNNNNC AG
	+10 GGGGG Ribosomal binding site	GGAGG
121	GGCAACAAGAGGTGTTTGATCTCATCCGTGATCACATCAG	
161	CCAGACAGGTATGCCGCCGACGCGTGCGGAAATCGCGCAG	ATG
201	CGTTTGGGGTTCCGTTCCCCAAACGCGGCTGAAGAACATC	
241	TGAAGGCGCTGGCACGCAAAGGCGTTATTGAAATTGTTTC	
281	CGGCGCATCACGCGGGATTCGTCTGTTGCAGGAAGAGGAA	
321	GAAGGGTTGCCGCTGGTAGGTCGTGTGGCTGCCGGTGAAC	
361	CACTTCTGGCGCAACAGCATATTGAAGGTCATTATCAGGT	OPEN READING FRAME
401	CGATCCTTCCTTATTCAAGCCGAATGCTGATTTCCTGCTG	
441	CGCGTCAGC GGGATGTCGATGAAAGATATCGGCATTATGG	
481	ATGGTGACTTGCTGGCAGTGCATAAAACTCAGGATGTACG	
521	TAACGGICAGGICGTIGICGCACGTATIGATGACGAAGTT	
100	*XCCTTTRECCCCTCALARARCAGGECARTARAGTCGAAC	
641	TOTTGCCAGAAAATAGCGAGITTAAACCAATTGTCGTIGA	
601	COTTOFICAGCAGAGOTICACCATIGAAGGGCIGGCGGIT	
721	IGIGCCCCCB TCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TAA
761	MCMCCGCGA IGCCGCCIGGCGICGCGGGTTGTTTTCATC	
801	TOTO I TORI CAGGO I IGICI I GORI GOCALI COLORCI LOR TYTTE I II I I GOLORI CAGGO I I GOCALI GOCALI COLORCI LORI	
841	TCTCCBATATAGCACCCTTCCCCTTCCCCATCCBATLC	
881	GGCGGTAATTGGTCATCTTGATAGCCCCGGTTTATTGGGC	
921	GGCGTGGCGGTTGGCGCAACGGCGGACCAGCT	

Shown are matches to approximate consensus binding sites for LexA repressor (CTGNNNNNNNNNNCAG), the -10 amd -35 promoter regions relative to the start of the mRNA (TTGACA and TATAAT), the ribosomal binding site on the mRNA (GGAGG), and the open reading frame (ATG...TAR). Only the second two of the predicted LexA binding sites actually bind the repressor.

FIGURE 9.6. The promoter and open reading frame of the E. coli lexA gene.

Messenger RNA or mRNA

Start and Stop Codon Distribution

FIGURE 9.1. ORF map of a portion of the *E. coli lac* operon using the DNA STRIDER program (Marck 1988). Shown are AUG and termination codons as one-half and full vertical bars, respectively, in all six possible reading frames. The *lacZ* gene is visible as an ORF that runs from positions 1284 to 4355 in frame 3.

Genetic Code

Second letter										
		U		c			A	G		
· · · · ·			Phenyl- alanine	UCU UCC	Sorino	UAU UAC	Tyrosine	UGU UGC	Cysteine	U C
		UUA UUG	Leucine	UCA UCG	Serine	UAA UAG	Stop codon Stop codon	UGA UGG	Stop codon Tryptophan	A G
letter	~	C CUU CUC CUA CUG Leucine	CCU CCC Proline	CAU CAC	Histidine	CGU CGC	Argining	U C		
			Leucine	CCA CCG	Fromle	CAA CAG	Glutamine	CGA CGG	Ciginnie	A G
First	AL	AUU AUC	Isoleucine Methionine; initiation codon	ACU ACC ACA ACG	Threonine	AAU AAC	Asparagine	AGU AGC	Serine	U C
		AUA				AAA AAG	Lysine	AGA AGG	Arginine	A G
	G	G GUU GUC GUA GUG Valine GCU GCA GCA GCG	GCU GCC	Alanine	GAU GAC	Aspartic acid	GGU GGC GGA GGG	Glycine	U C	
	J		GCA GCG		GAA GAG	Glutamic acid			A G	

2/10/05

CAP5510/CGS5166 (Lec 10)

Recognizing Codons

Codon Bias

2/10/05

Codon Bias

Eukaryotic Gene Prediction

- Complicated by introns & alternative splicing
- Exons/introns have different GC content.
- Many other measures distinguish exons/introns
- Software:
 - GENEPARSER Snyder & Stormo (NN)
 - GENIE Kulp, Haussler, Reese, Eckman (HMM)
 - GENSCAN Burge, Karlin (Decision Trees)
 - XGRAIL Xu, Einstein, Mural, Shah, Uberbacher (NN)
 - PROCRUSTES Gelfand (Formal Languages)
 - MZEF Zhang

Introns/Exons in C. elegans

- 8192 Introns in C. elegans: [GT...AG]
- Vary in lengths from 30 to over 600; Complexity varies

HMM structure for Gene Finding

Transcriptional machinery: RNA Polymerase and DNA

Slide courtesy Prof. Mathee