Multip	ole Alignments: CLUSTAL	W			
 identical 					
: conserved	substitutions				
. semi-conse	semi-conserved substitutions				
gi 2213819	CDN-ELKSEAIIEHLCASEFALRMKIKEVKKENGDKK	223			
gi 7512442	CKNKNDDDNDIMETLCKNDFALKIKVKEITYINRDTK	211			
gi 1344282	QDECKFDYVEVYETSSSGAFSLLGRFCGAEPPPHLVSSHHELAVLFRTDH : . : * *:* :*:	400			
Red:	AVFPMLW (Small & hydrophobic)				
Blue:	DE (Acidic)				
Magenta:	RHK (Basic)				
Green:	STYHCNGQ (Hydroxyl, Amine, Basic)				
Gray:	Others				
1/31/06	CAP5510/CGS5166	1			

	М	ultiple Alignments	
•	Family alignmen tyrosine-based	t for the ITAM domain (Immunor activation motif)	receptor
•	CD3D_MOUSE/1-2 Q90768/1-21 CD3G_SHEEP/1-2 P79951/1-21 FCEG_CAVPO/1-2 CD3Z_HUMAN/3-0 C79A_BOVIN/1-2 C79B_MOUSE/1-2 CD3T_SHEEP/1-2 CD3Z_SHEEP/1-2 CD3E_HUMAN/1-2 CD3H_MOUSE/2-0 Consensus/60%	EQLYQPLEDR EDTQ-YSRLG GN DQLYQPLERR NDQQ-YSQLA TA DQLYQPLERR NDQQ-YSQLA TA NDLYQPLERR EDDQ-YSHLR KK NDLYQPLEQR SEDT-YSHLN SR DGIYTGLSTR NQET-YETLK HE DGLYGLSTA TKDT-YDALH MQ ENLYEGLNLD DCSM-YEDIS RG DHTYEGLNLD DCSM-YEDIS RG DHTYEGLNLD QTAT-YEDIV TL NQLYNELNUG RREE-YDVLE KK NPVYNELNYG RREE-YDVLE KK NPVYNE RREF RREF KK NPVYNE RREF RRF RRF RRF RRF RRF RRF RRF RRF R	Simple Modular Architecture Research Tool
	1/31/06	CAP5510/CGS5166	2

Evaluating MSAs

- Choice of good test sets or benchmarks (BAliBASE)
- How to decide thresholds for good/bad alignments

1/31/06

CAP5510/CGS5166

CpG Islands

- Regions in DNA sequences with increased occurrences of substring "CG"
- Rare: typically C gets methylated and then mutated into a T.
- Often around promoter or "start" regions of genes

CAP5510/CGS5166

14

15

• Few hundred to a few thousand bases long

Problem 1:

1/31/06

1/31/06

- Input: Small sequence S
- Output: Is S from a CpG island?
 - Build Markov models: M+ and M ---

CAP5510/CGS5166

• Then compare

	How to distinguish?								
• (• Compute								
	$S(x) = \log\left(\frac{P(x \mid M +)}{P(x \mid M -)}\right) = \sum_{i=1}^{L} \log\left(\frac{p_{x_{(i-1)x_i}}}{m_{x_{(i-1)x_i}}}\right) = \sum_{i=1}^{L} r_{x_{(i-1)x_i}}$								
	r=p/m			-					
		^	C	G	Т	Score(GCAC)			
	A	-0.740	0.419	G 0.580	T -0.803	Score(GCAC) = .461913+.419 < 0.			
	A C	-0.740 -0.913	0.419 0.302	6 0.580 1.812	T -0.803 -0.685	Score(GCAC) = .461913+.419 < 0. GCAC not from CpG island.			
	A C G	-0.740 -0.913 -0.624	0.419 0.302 0.461	6 0.580 1.812 0.331	T -0.803 -0.685 -0.730	Score(GCAC) = .461913+.419 < 0. GCAC not from CpG island. Score(GCTC) = .461685+.573			
	A C G T	-0.740 -0.913 -0.624 -1.169	0.419 0.302 0.461 0.573	6 0.580 1.812 0.331 0.393	T -0.803 -0.685 -0.730 -0.679	Score(GCAC) = .461913+.419 < 0. GCAC not from CpG island. Score(GCTC) = .461685+.573 > 0. GCTC from CpG island.			

Problem 1:

- Input: Small sequence S
- Output: Is S from a CpG island?
 - Build Markov Models: M+ & M-
 - Then compare

Problem 2:

- Input: Long sequence S
- Output: Identify the CpG islands in S.
 - Markov models are inadequate.
 - Need Hidden Markov Models.

1/31/06

CAP5510/CGS5166

18

Profile HI	MMs from Multiple Alignmen	ts
HBA_HUMAN	VGAHAGEY	
HBB_HUMAN	VNVDEV	
MYG_PHYCA	VEADVAGH	
GLB3_CHITP	VKGD	
GLB5_PETMA	VYSTYETS	
LGB2_LUPLU	FNANIPKH	
GLB1_GLYDI	IAGADNGAGV	
Construct Prof alignment.	ile HMM from above multiple	
1/31/06	CAP5510/CGS5166	30

Problem 3: LIKELIHOOD QUESTION

- Input: Sequence S, model M, state i
- Output: Compute the probability of reaching state i with sequence S using model M
 - Backward Algorithm (DP)

Problem 4: LIKELIHOOD QUESTION

- Input: Sequence S, model M
- Output: Compute the probability that S was emitted by model M
 - Forward Algorithm (DP)

1/31/06

CAP5510/CGS5166

Problem 5: LEARNING QUESTION

- Input: model structure M, Training Sequence S
- Output: Compute the parameters Θ
- Criteria: ML criterion
 - maximize $P(S | M, \Theta)$ HOW???

Problem 6: DESIGN QUESTION

- Input: Training Sequence S
- Output: Choose model structure M, and compute the parameters Θ

CAP5510/CGS5166

- No reasonable solution
- · Standard models to pick from

1/31/06

33

32

Entropy • Entropy measures the variability observed in given data. $E = -\sum_{c} p_c \log p_c$ • Entropy is useful in multiple alignments & profiles. • Entropy is max when uncertainty is max.

G-Protein Couple Receptors

- \bullet Transmembrane proteins with 7 $\alpha\text{-helices}$ and 6 loops; many subfamilies
- Highly variable: 200-1200 aa in length, some have only 20% identity.
- [Baldi & Chauvin, '94] HMM for GPCRs
- HMM constructed with 430 match states (avg length of sequences) ; Training: with 142 sequences, 12 iterations

1/31/06

36

Applications of HMM for GPCR

Bacteriorhodopsin

1/31/06

- Transmembrane protein with 7 domains
- But it is not a GPCR
- Compute score and discover that it is close to the regression line. Hence not a GPCR.
- Thyrotropin receptor precursors
- All have long initial loop on INSERT STATE 20.
- Also clustering possible based on distance to regression line.

CAP5510/CGS5166

41

42

HMMs – Advantages

- Sound statistical foundations
- Efficient learning algorithms
- Consistent treatment for insert/delete penalties for alignments in the form of locally learnable probabilities
- Capable of handling inputs of variable length
- Can be built in a modular & hierarchical fashion; can be combined into libraries.
- Wide variety of applications: Multiple Alignment, Data mining & classification, Structural Analysis, Pattern discovery, Gene prediction.

CAP5510/CGS5166

1/31/06

