CAP 5510: Introduction to Bioinformatics

Giri Narasimhan

ECS 254; Phone: x3748

giri@cis.fiu.edu

www.cis.fiu.edu/~giri/teach/BioinfS07.html

CpG Islands

- □ Regions in DNA sequences with increased occurrences of substring "CG"
- □ Rare: typically C gets methylated and then mutated into a T.
- Often around promoter or "start" regions of genes
- ☐ Few hundred to a few thousand bases long

Problem 1:

- Input: Small sequence S
- Output: Is S from a CpG island?
 - Build Markov models: M+ and M —
 - Then compare

Markov Models

+	A	С	G	Т
A	0.180	0.274	0.426	0.120
С	0.171	0.368	0.274	0.188
G	0.161	0.339	0.375	0.125
т	0.079	0.355	0.384	0.182

_	A	С	G	Т
Α	0.300	0.205	0.285	0.210
С	0.322	0.298	0.078	0.302
G	0.248	0.246	0.298	0.208
Т	0.177	0.239	0.292	0.292

How to distinguish?

Compute

$$S(x) = \log \left(\frac{P(x \mid M +)}{P(x \mid M -)} \right) = \sum_{i=1}^{L} \log \left(\frac{p_{x(i-1)xi}}{m_{x(i-1)xi}} \right) = \sum_{i=1}^{L} r_{x(i-1)xi}$$

r=p/m	A	С	G	Т
A	-0.740	0.419	0.580	-0.803
С	-0.913	0.302	1.812	-0.685
G	-0.624	0.461	0.331	-0.730
Т	-1.169	0.573	0.393	-0.679

Score(GCAC)
= .461-.913+.419
< 0.
GCAC not from CpG island.

Score(GCTC)
= .461-.685+.573
> 0.
GCTC from CpG island.

Problem 1:

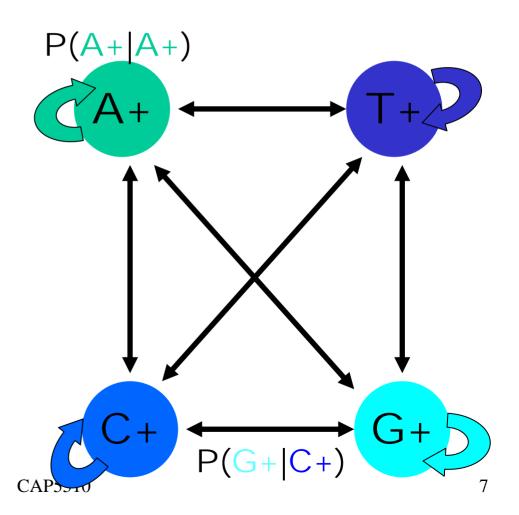
- Input: Small sequence S
- Output: Is S from a CpG island?
 - Build Markov Models: M+ & M-
 - Then compare

Problem 2:

- Input: Long sequence S
- Output: Identify the CpG islands in S.
 - Markov models are inadequate.
 - Need Hidden Markov Models.

Markov Models

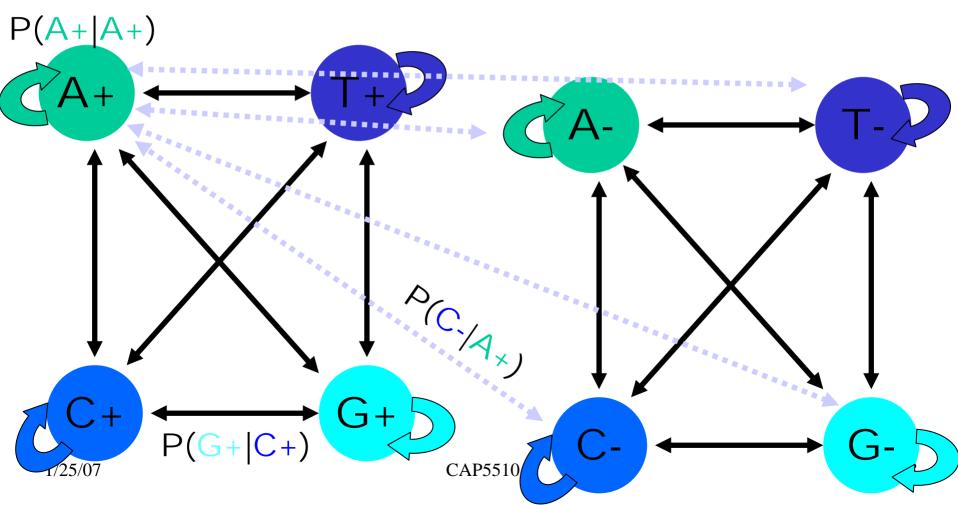
+	A	С	G	т
A	0.180	0.274	0.426	0.120
С	0.171	0.368	0.274	0.188
G	0.161	0.339	0.375	0.125
Т	0.079	0.355	0.384	0.182



1/25/07

CpG Island + in an ocean of -First order Hidden Markov Model

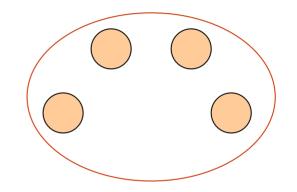
MM=16, HMM= 64 transition probabilities (adjacent bp)

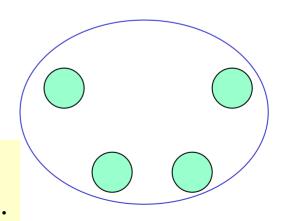


Hidden Markov Model (HMM)

- States
- Transitions
- Transition Probabilities
- Emissions
- Emission Probabilities

Answer: The <u>path</u> through the model is hidden since there are many valid paths.





How to Solve Problem 2?

```
□ Solve the following problem:

Input: Hidden Markov Model M,

parameters Θ, emitted sequence S

Output: Most Probable Path Π

How: Viterbi's Algorithm (Dynamic Programming)

Define Π[i,j] = MPP for first j characters of S ending in state i

Define P[i,j] = Probability of Π[i,j]

© Compute state i with largest P[i,j].
```

Profile Method

PROFILE METHOD, [M. Gribskov et al., '90]

Location		S	Sec	lue	nc	е		Protein		
in Seq.	1	2	3	4	5	6	7	Name		
14	G	V	S	Α	S	A	V	Ka RbtR		
32	G	V	S	E	M	т	Ι	Ec DeoR		
33	G	V	S	P	G	Т	I	Ec RpoD		
76	G	A	G	I	Α	\mathbf{T}	I	Ec TrpR		
178	G	C	S	R	Ε	Т	V	Ec CAP		
205	C	L	S	P	S	R	L	Ec AraC		
210	C	L	S	P	S	R	L	St AraC		
13	G	V	N	K	E	Т	I	Br MerR		

FREQUENCY TABLE

	A	C	D	E	F	G	Н	I	K	L	M	N	P	Q	R	S	T	V	W	Y
1	0	2	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	4	0	0
3	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	6	0	0	0	0
4	1	0	0	1	0	0	0	1	1	0	0	0	3	0	1	0	0	0	0	0
5	1	0	0	2	0	1	0	0	0	0	1	0	0	0	0	3	0	0	0	0
6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	5	0	0	0
7	0	0	0	0	0	0	0	4	0	2	0	0	0	0	0	0	0	2	0	0

Profile Method

FREQUENCY TABLE

	A	С	D	Ε	F	G	Н	Ι	K	L	М	N	Р	Q	R	S	Т	V	W	Y
1	0	2	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	4	0	0
3	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	6	0	0	0	0
4	1	0	0	1	0	0	0	1	1	0	0	0	3	0	1	0	0	0	0	0
5	1	0	0	2	0	1	0	0	0	0	1	0	0	0	0	3	0	0	0	0
6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	5	0	0	0
7	0	0	0	0	0	0	0	4	0	2	0	0	0	0	0	0	0	2	0	0

WEIGHT MATRIX

	A	C	E	G	I	K	L	M	N	P	R	S
1	0	108	0	101	0	0	0	0	0	0	0	0
2	21	78	0	0	0	0	44	0	0	0	0	0
3	0	0	0	23	0	0	0	0	46	0	0	102
4	21	0	32	0	38	32	0	0	0	86	39	0
5	21	0	62	23	0	0	0	74	0	0	0	72
6	21	0	0	0	0	0	0	0	0	0	69	0
7	0	0	0	0	98	0	44	0	0	0	0	0

$$Weight[i, AA] = \log\left(\frac{Freq[i, AA]}{p[AA] \cdot N}\right) \cdot 100$$

8

Profile Method

WEIGHT MATRIX

	A	C	E	G	I	K	L	M	N	P	R	S
1	0	108	0	101	0	0	0	0	0	0	0	0
2	21	78	0	0	0	0	44	0	0	0	0	0
3	0	0	0	23	0	0	0	0	46	0	0	102
4	21	0	32	0	38	32	0	0	0	86	39	0
5	21	0	62	23	0	0	0	74	0	0	0	72
6	21	0	0	0	0	0	0	0	0	0	69	0
7	0	0	0	0	98	0	44	0	0	0	0	0

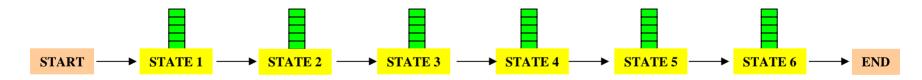
Given the following protein sequence:

M T E D L F G D L Q D D T I L A H L D N
P A E D T S R F P A L L A E L N D L L R
G E L S R L G V D P A H S L E I V V A I
C K H L G G G Q V Y I P R G Q A L D S L
I R D L R I W N D F N G R N V S E L T T
R Y G V T F N T V Y K A I R R M R R L K

Profile HMMs

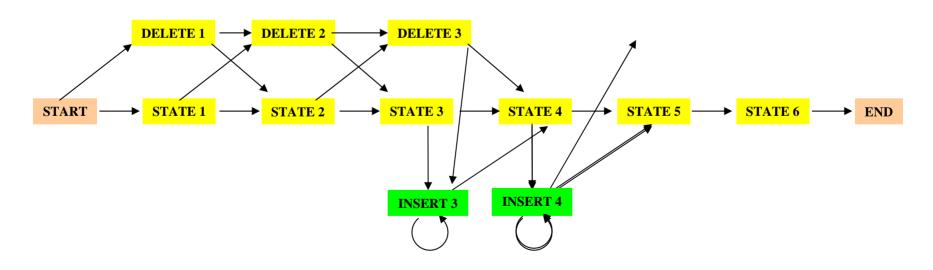
PROFILE METHOD, [M. Gribskov et al., '90]

Location	Į.	S	Sec	que	nc	e .	Protein
in Seq.	1	2	3	4	5	6	Name
14	G	V	S	A	S	Α	Ka RbtR
32	G	V	S	E	M	Т	Ec DeoR
33	G	V	S	P	G	Т	Ec RpoD
76	G	A	G	I	A	Т	Ec TrpR
178	G	C	S	R	E	Т	Ec CAP
205	C	L	S	P	S	R	Ec AraC
210	C	L	S	P	S	R	St AraC
13	G	V	N	K	E	Т	 Br MerR

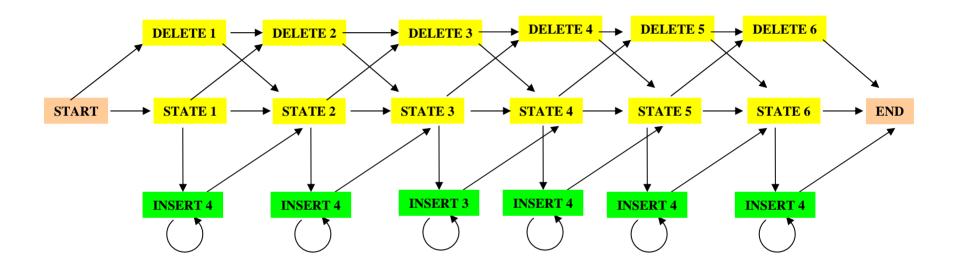


Profile HMMs with InDels

- Insertions
- Deletions
- Insertions & Deletions



Profile HMMs with InDels

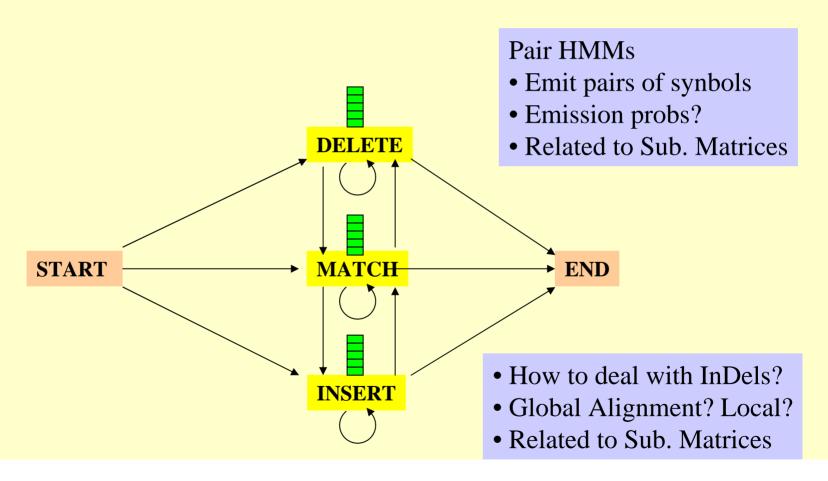


Missing transitions from DELETE j to INSERT j and from INSERT j to DELETE j+1.

How to model Pairwise Sequence Alignment

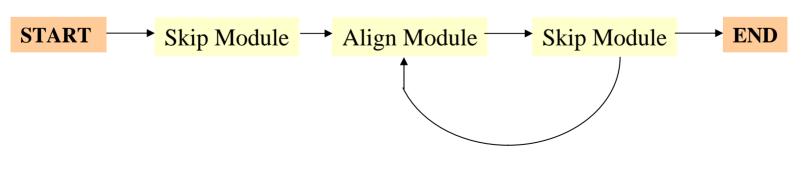
LEAPVE

LAPVIE



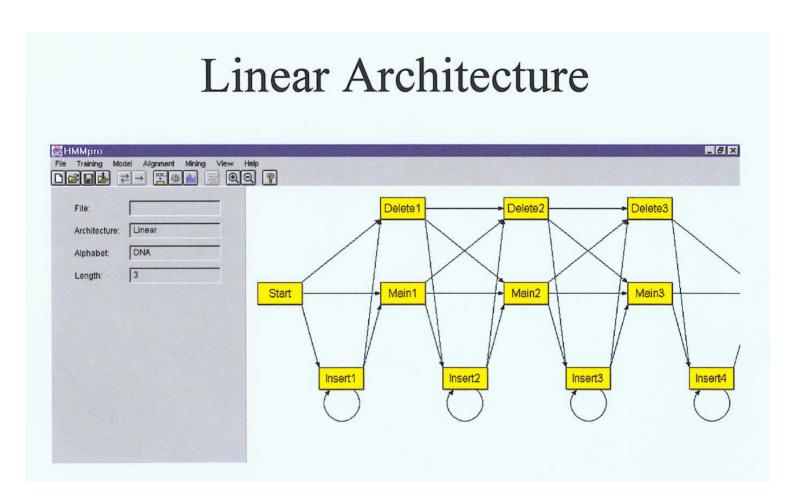
How to model Pairwise Local Alignments?

How to model Pairwise Local Alignments with gaps?

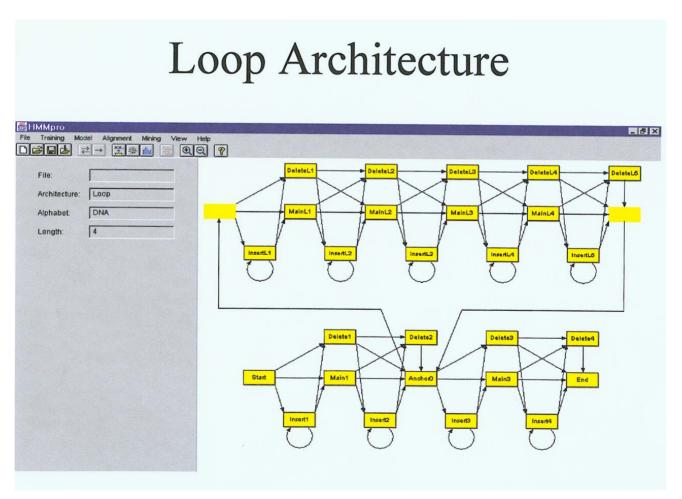


1/25/07 CAP5510 18

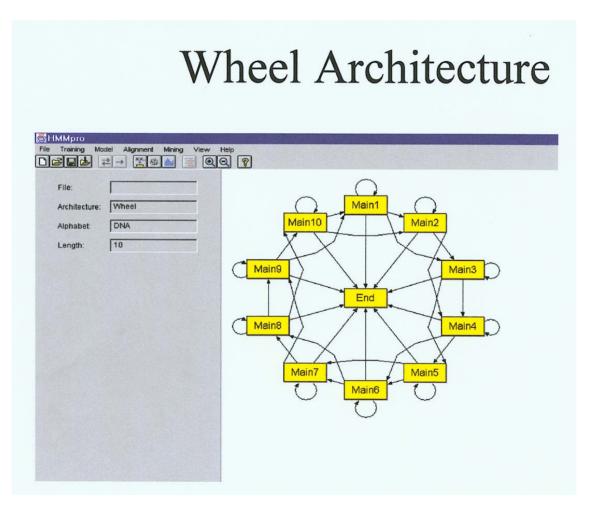
Standard HMM architectures



Standard HMM architectures



Standard HMM architectures



Profile HMMs from Multiple Alignments

```
HBA_HUMAN VGA--HAGEY
HBB_HUMAN V---NVDEV
MYG PHYCA VEA--DVAGH
```

GLB3 CHITP VKG----D

GLB5_PETMA VYS--TYETS

LGB2_LUPLU FNA--NIPKH

GLB1_GLYDI IAGADNGAGV

Construct Profile HMM from above multiple alignment.

HMM for Sequence Alignment

A. Sequence alignment

N • F L S N • F L S N K Y L T Q • W - T

RED POSITION REPRESENTS ALIGNMENT IN COLUMN GREEN POSITION REPRESENTS INSERT IN COLUMN PURPLE POSITION REPRESENTS DELETE IN COLUMN

B. Hidden Markov model for sequence alignment

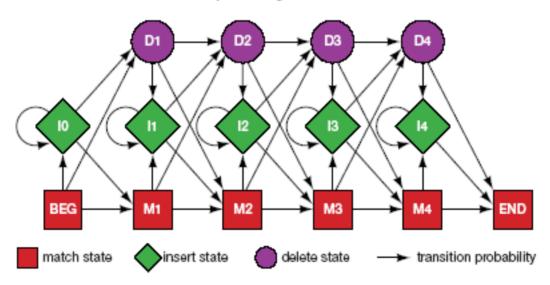


FIGURE 5.16. Relationship between the sequence alignment and the hidden Markov model of the alignment (Krogh et al. 1994). This particular form for the HMM was chosen to represent the sequence, structural, and functional variation expected in proteins. The model accommodates the identities, mismatches, insertions, and deletions expected in a group of related proteins. (A) A section of an msa. The illustration shows the columns generated in an msa. Each column may include matches and mismatches (red positions), insertions (green positions), and deletions (purple positions). (B) The HMM. Each column in the model represents the possibility of a match, insert, or delete in each column of the alignment in A. The HMM is a probabilistic representation of a section of the msa. Sequences can be generated from the HMM by starting at the beginning state labeled BEG and then by following

Problem 3: LIKELIHOOD QUESTION

- Input: Sequence S, model M, state i
- Output: Compute the probability of reaching state i with sequence S using model M
 - Backward Algorithm (DP)

Problem 4: LIKELIHOOD QUESTION

- Input: Sequence S, model M
- Output: Compute the probability that S was emitted by model M
 - Forward Algorithm (DP)

Problem 5: LEARNING QUESTION

- Input: model structure M, Training Sequence S
- Output: Compute the parameters Θ
- Criteria: ML criterion
 - maximize $P(S \mid M, \Theta)$ HOW???

Problem 6: **DESIGN QUESTION**

- Input: Training Sequence S
- Output: Choose model structure M, and compute the parameters Θ
 - No reasonable solution
 - Standard models to pick from

Iterative Solution to the LEARNING QUESTION (Problem 5)

- \square Pick initial values for parameters Θ_0
- Repeat

Run training set S on model MCount # of times transition $i \Rightarrow j$ is made Count # of times letter x is emitted from state iUpdate parameters Θ

Until (some stopping condition)

Entropy

□ Entropy measures the variability observed in given data.

$$E = -\sum_{c} p_c \log p_c$$

- □ Entropy is useful in multiple alignments & profiles.
- □ Entropy is max when uncertainty is max.

G-Protein Couple Receptors

- $lue{}$ Transmembrane proteins with 7 lpha-helices and 6 loops; many subfamilies
- Highly variable: 200-1200 aa in length, some have only 20% identity.
- □ [Baldi & Chauvin, '94] HMM for GPCRs
- □ HMM constructed with 430 match states (avg length of sequences);
 Training: with 142 sequences, 12 iterations

GPCR - Analysis

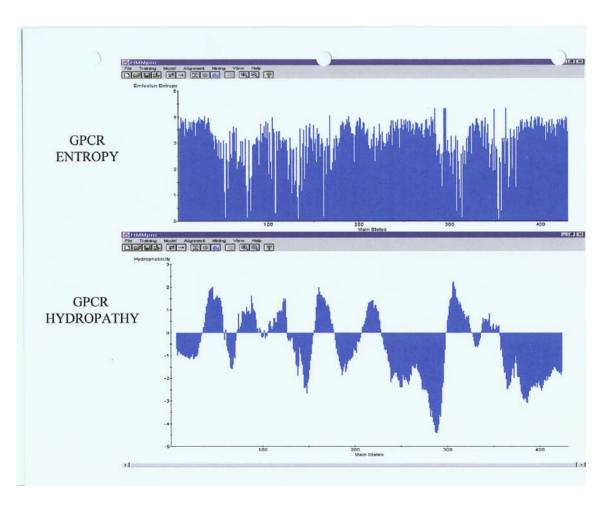
□ Compute main state entropy values

$$H_i = -\sum_a e_{ia} \log e_{ia}$$

- ☐ For every sequence from test set (142) & random set (1600) & all SWISS-PROT proteins
 - \blacksquare Compute the negative log of probability of the most probable path π

$$Score(S) = -\log(P(\pi \mid S, M))$$

GPCR Analysis



Entropy

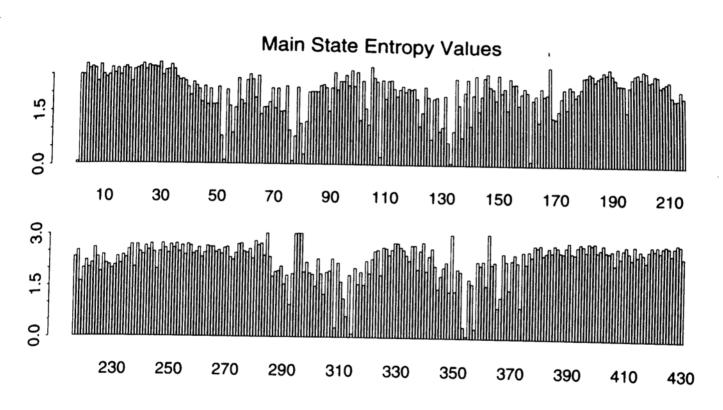


Figure 8.1: Entropy Profile of the Emission Probability Distributions Associated with the Main States of the HMM After 12 Cycles of Training.

GPCR Analysis (Cont'd)

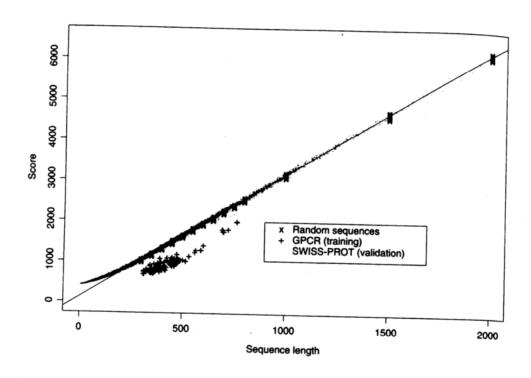


Figure 8.2: Scores (Negative Log-likelihoods of Optimal Viterbi Paths). Represented sequences consist of 142 GPCR training sequences, all sequences from the SWISS-PROT database of length less than or equal to 2000, and 220 randomly generated sequences with same average composition as the GPCRs of length 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800 (20 at each length). The regression line was obtained from the 220 random sequences. The horizontal distances in the histogram correspond to malized scores (6).

Applications of HMM for GPCR

- Bacteriorhodopsin
 - Transmembrane protein with 7 domains
 - But it is not a GPCR
 - Compute score and discover that it is close to the regression line. Hence not a GPCR.
- ☐ Thyrotropin receptor precursors
 - All have long initial loop on INSERT STATE 20.
 - Also clustering possible based on distance to regression line.

HMMs - Advantages

- Sound statistical foundations
- Efficient learning algorithms
- Consistent treatment for insert/delete penalties for alignments in the form of locally learnable probabilities
- Capable of handling inputs of variable length
- Can be built in a modular & hierarchical fashion; can be combined into libraries.
- Wide variety of applications: Multiple Alignment, Data mining & classification, Structural Analysis, Pattern discovery, Gene prediction.

HMMs - Disadvantages

- ☐ Large # of parameters.
- Cannot express dependencies & correlations between hidden states.