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CpG Islands

 Regions in DNA sequences with increased occurrences of substring "CG"
[ Rare: typically C gets methylated and then mutated into a T.

 Often around promoter or "start” regions of genes

O Few hundred to a few thousand bases long
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Problem 1.

 Input: Small sequence S

e Qutput: Is S from a CpG island?
e Build Markov models: M+ and M —
e Then compare
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Markov Models
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How to distinguish?

d Compute

o )l 2] 1

i=1

Mk - nx

Scor e(GCACQ)
— = 461-.913+.419
< 0.
-0.913 0.302 1812 -0.685 GCAC not from CpG idand.
20624 0.461 0331 20.730 Scor &(GCTC)
' . ' . = .461-.685+.573
21169 0573 0.393 20.679 >0. _
gcTc from CpG island.
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Problem 1.

 |nput: Small sequence S

e QOutput: Is S from aCpG idand?
e Build Markov Models: M+ & M-
e Then compare

Problem 2:

* |nput: Long sequence S

o Output: Identify the CpG islandsin S.
 Markov models are inadequate.
* Need Hidden Markov Models.
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Markov Models
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CpG Island + in an ocean of —
First order Hidden Markov Model

MM=16, HMM= 64 transition probabilities (adjacent bp)
P(A+|A+)
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Hidden Markov Model (HMM)

e States

e Transitions

e Transition Probabilities
e Emissions

* Emission Probabilities

O

O O
O O
O
e What is hidden about HMMSs? @
O O

Answer: The path through the model is
hidden since there are many valid paths.
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How to Solve Problem 27

[ Solve the following problem:

Input: Hidden Markov Model M,
parameters O, emitted sequence S

QOutput: Most Probable Path T1

How: Viterbi's Algorithm (Dynamic Programming)
Define II[i,j] = MPP for first j characters of S ending in state i
Define P[i,j] = Probability of II[i,|]

@ Compute state i with largest P[i, j].

1/25/07 CAP5510

10



Profile Method

PROFILE METHOD, [M. Gribskov et al., '90]
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Profile Method
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Profile Method

WEIGHT MATRIX

A] C |E] G |I|K]JL| M|[N|P]|R] 8
1[0 (108 0 |101|0 | 0|0 |O0|0O|OC]|O]| O
2121 78 0 0 0 0 44 0 0 0 0 0
3lo| o |of22]|0|0|o0|0|46]| 0| 0 |102
4 |21 0 32 0 38 | 32 0 0 0 g6 | 39 0
5121 0 62 23 0 0 0 74 0 0 0 72
6|22 o [o| o [o]|o0o|O0|O0|0|O|s69]| 0
71 0 0 0 0 98 | 0 |44 | O 0 0 0 0
Given the following protein sequence:
MTEDLFGDLQDDTILAHLDN
PAEDTSRFPALLAELNDLLR
GELSRLGVDPAHSLEIVVATI
CKHLGGGQVYIPRGQALDSTL
IRDLRIWNDFNGRNVSELTT
RYGVTFNTVYKAIRRMRRLEK
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START —» STATE1 —» STATE2 —» STATE3 —»
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Profile HMMs

PROFILE METHOD, [M. Gribskov et al., '90]

Location Sequence | Protein

inSeq. |1 2 3 4 5 6 Name
14/GV SASA Ka RbtR
32|GVSEMT Ec DeoR
33|avsSPGT Ec RpoD
16| GAGIAT Ec TrpR
1T7|GCSRET Ec CAP
205|c LS PSR Ec AraC
210|c L s PSR St AraC
13|GVNKET Br MerR

STATE4 —» STATE5 —» STATE6 —» END
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Profile HMMs with InDels

e | nsertions
e Deletions
e |nsertions & Deletions

DELETE1 —>» DELETE2 —» DELETE3

START —» STATE1 —» STATE2 — S'I'ATEB/L STATE 4 STATES —» STATE6 — END

,

INSERT 3 INSERT 4

O O
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Profile HMMs with InDels

DELETE 1 —» DELETE2 —> DELETE3 —» DELETE4 — DELETES —» DELETEG

N N AN

START — STATEl — STATEZ — STATE3 —» STATE4 —>» STATE5 —» STATE6 —» END

VR vy

Missing transitions from DELETE j to INSERT | and
from INSERT j to DELETE j+1.
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How to model Pairwise Sequence Alignment

LEAPVE
LAPVIE
Pair HMMs
e Emit pairs of synbols
E e Emission probs?
/ D%BTE » Related to Sub. Matrices
START - MATCH » END
\ IVNSEERT /Hovvto deal with InDels?
U » Global Alignment? Local?
» Related to Sub. Matrices
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How to model Pairwise Local Alignments?

START — Skip Module —— Align Module — Skip Module — EnD

How to model Pairwise Local Alignments with
gaps?

START — Skip Module — Align Module — Skip Module —* END

N
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Standard HMM architectures

[Linear Architecture

| Delete1 Delete2 Delete3

e
I o
Start MalM* M2* Main3

Insert1 Insert2 Insert3 Insert4

@, O ) @
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Standard HMM architectures

Loop Architecture

CAP5510
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Standard HMM architectures

Wheel Architecture
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HBA_ HUMAN
HBB_HUMAN
MYG_PHYCA
GLB3_CHITP
GLB5_PETMA
LGB2_LUPLU
GLB1_GLYDIT

Construct Profile HMM from above multiple alignment.

1/25/07

VGA--HAGEY

V----NVDEV
VEA--DVAGH
VKG------ D

VYS--TYETS
FNA--NIPKH
IAGADNGAGV

Profile HMMs from Multiple Alignments

CAP5510
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HMM for Sequence Alignment

A. Sequence alignmant
N = F L S
N = F L S
N K Y L T
g +« W - T

RED POSITION REPRESENTS ALIGNMENT IN COLUMM
GREEN POSITION REFRESENTS INSERT IN COLUMN
PURFPLE POSITION REPRESENTS DELETE IN COLUMN

»-4@?)
g o-nn -

BEG
. match stata ’insert stats . chalets 2tate —= Transition probability

Da

M4

FIGURE 5.16. Relationship between the sequence alignment and the hidden Markov model of the alignment { Krogh et al. 1994).
This particular form for the HMM was chosen to represent the sequence, structural, and functional variation expected in proteins.
The model accommeodates the identities, mismatches, insertions, and deletions expected in a group of related proteins. (A) A sec-
tion of an msa. The illustration shows the columns generated in an msa. Each column may include matches and mismatches (red
positions), insertions (green positions), and deletions {purple positions). (B} The HMM. Each column in the model represents the
possibility of a match, insert, or delete in each column of the alignment in 4. The HMM is a probabilistic representation of a sec-
tion of the msa. Sequences can be generated from the HMVIM by starting at the beminnineg state labeled BEG and then by following



Problem 3: LIKELIHOOD QUESTION

= o |NpUL: Sequence S, model M, state | —_—

e Output: Compute the probability of reaching
state | with sequence S using model M

o Backward Algorithm (DP)

Problem 4. LIKELIHOOD QUESTION
 |nput: Sequence S, model V]

e Output: Compute the probability that S was
emitted by model M

* Forward Algorithm (DP)
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Problem 5: LEARNING QUESTION
= o |Nput: model structure M, Training Sequence S = =
e Output: Compute the parameters ©
o Criteria: ML criterion
e maximize P(S| M, ®) HOW???

Problem 6: DESIGN QUESTION
 |nput: Training Sequence S

e Output: Choose model structure M, and compute
the parameters ©

* N0 reasonable solution
 Standard modelsto pick from
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lterative Solution to the LEARNING QUESTION (Problem 5)

A Pick initial values for parameters 0,
O Repeat

Run training set S on model M

Count # of times transition i = j is made

Count # of times letter x is emitted from state i
Update parameters ©

[ Until (some stopping condition)

1/25/07 CAP5510
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Entropy

dEntropy measures the variability observed in given
data.

E=-> pclogpe
dEntropy is useful in multiple alignments & profiles.

dEntropy is max when uncertainty is max.

1/25/07 CAP5510 27



G-Protein Couple Receptors

O Transmembrane proteins with 7 o-helices and 6 loops; many subfamilies
O Highly variable: 200-1200 aa in length, some have only 20% identity.
d [Baldi & Chauvin, '94] HMM for GPCRs

d HMM constructed with 430 match states (avg length of sequences) ;
Training: with 142 sequences, 12 iterations
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GPCR - Analysis

L Compute main state entropy values
Hi=-) ealogea
a

For every sequence from test set (142) & random
set (1600) & all SWISS-PROT proteins

® Compute the negative log of probability of the most
probable path &

Score(S) = —log(P( | S,M))
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GPCR Analysis

GPCR
ENTROPY

Hysaphableiy
El

GPCR
HYDROPATHY

700
Main States
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Entropy
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GPCR Analysis (Cont’d)

X Random sequences
+ GPCR (training)
SWISS-PROT (validation)

T T T T —T
0 500 . 1000 1500 2000

Sequence length

Figure 8.2: Scores (Negative Log-likelihoods of Optimal Viterbi Paths). Represented sequences
consist of 142 GPCR training sequences, all sequences from the SWISS-PROT database of length
less than or equal to 2000, and 220 randomly generated sequences with same average com-
position as the GPCRs of length 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800 (20 at
each length). The regression line was obtained from the 220 random sequences. The horizont:zJ
distances in the histogram correspond to{ malized scores (6).
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Applications of HMM for GPCR

1 Bacteriorhodopsin
@ Transmembrane protein with 7 domains
@ But it is not a GPCR

@ Compute score and discover that it is close to the regression line. Hence not
a GPCR.

d Thyrotropin receptor precursors
@ All have long initial loop on INSERT STATE 20.
@ Also clustering possible based on distance to regression line.
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HMMs — Advantages

Sound statistical foundations
Efficient learning algorithms

Consistent treatment for insert/delete penalties for alignments in the form of
locally learnable probabilities

Capable of handling inputs of variable length
Can be built in a modular & hierarchical fashion; can be combined into libraries.

Wide variety of applications: Multiple Alignment, Data mining & classification,
Structural Analysis, Pattern discovery, Gene prediction.
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HMMs — Disadvantages

O Large # of parameters.
0 Cannot express dependencies & correlations between hidden states.
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