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Hidden Markov Model (HMM)

• States 
• Transitions 
• Transition Probabilities
• Emissions
• Emission Probabilities

• What is hidden about HMMs?

Answer: The path through the model is 
hidden since there are many valid paths.
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Profile HMMs

STATE 1 ENDSTART STATE 2 STATE 3 STATE 4 STATE 5 STATE 6



Profile HMMs with InDels
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• Insertions
• Deletions
• Insertions & Deletions

STATE 1 ENDSTART STATE 2 STATE 3 STATE 4 STATE 5 STATE 6

INSERT 4

DELETE 2 DELETE 3DELETE 1

INSERT 3 INSERT 4
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Profile HMMs with InDels

STATE 1 ENDSTART STATE 2 STATE 3 STATE 4 STATE 5 STATE 6

INSERT 4

DELETE 2 DELETE 3DELETE 1

INSERT 3

DELETE 4 DELETE 5 DELETE 6

INSERT 4INSERT 4 INSERT 4 INSERT 4

Missing transitions from DELETE j to INSERT j and 
from INSERT j to DELETE j+1.
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How to model Pairwise Sequence Alignment

LEAPVE

LAPVIE

MATCH ENDSTART

DELETE

INSERT

Pair HMMs
• Emit pairs of synbols
• Emission probs?
• Related to Sub. Matrices

• How to deal with InDels?
• Global Alignment? Local?
• Related to Sub. Matrices
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How to model Pairwise Local Alignments?

How to model Pairwise Local Alignments with 
gaps?

Skip Module Align Module Skip ModuleSTART END

Skip Module Align Module Skip ModuleSTART END



Standard HMM architectures

2/6/07 CAP5510 8



Standard HMM architectures
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Standard HMM architectures
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Profile HMMs from Multiple Alignments

HBA_HUMAN VGA--HAGEY

HBB_HUMAN V----NVDEV

MYG_PHYCA VEA--DVAGH

GLB3_CHITP VKG------D

GLB5_PETMA VYS--TYETS

LGB2_LUPLU FNA--NIPKH

GLB1_GLYDI IAGADNGAGV

Construct Profile HMM from above multiple alignment.
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HMM for Sequence Alignment
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Problem 3: LIKELIHOOD QUESTION
• Input: Sequence S, model M, state i
• Output: Compute the probability of reaching 

state i with sequence S using model M
• Backward Algorithm (DP)

Problem 4: LIKELIHOOD QUESTION
• Input: Sequence S, model M
• Output: Compute the probability that S was 

emitted by model M
• Forward Algorithm (DP)
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Problem 5: LEARNING QUESTION
• Input: model structure M, Training Sequence S
• Output: Compute the parameters Θ
• Criteria: ML criterion

• maximize P(S | M, Θ)    HOW???

Problem 6: DESIGN QUESTION
• Input: Training Sequence S
• Output: Choose model structure M, and compute 

the parameters Θ
• No reasonable solution
• Standard models to pick from
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Iterative Solution to the LEARNING QUESTION (Problem 5)

Pick initial values for parameters Θ0

Repeat
Run training set S on model M
Count # of times transition i ⇒ j is made
Count # of times letter x is emitted from state i
Update parameters Θ

Until (some stopping condition)
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Entropy
Entropy measures the variability observed in given 
data.

Entropy is useful in multiple alignments & profiles.

Entropy is max when uncertainty is max.

∑−=
c

cc ppE log
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G-Protein Couple Receptors
Transmembrane proteins with 7 α-helices and 6 loops; many subfamilies
Highly variable: 200-1200 aa in length, some have only 20% identity.
[Baldi & Chauvin, ’94] HMM for GPCRs
HMM constructed with 430 match states (avg length of sequences) ; 
Training: with 142 sequences, 12 iterations
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GPCR - Analysis

Compute main state entropy values

For every sequence from test set (142) & random 
set (1600) & all SWISS-PROT proteins

Compute the negative log of probability of the most 
probable path π

∑−=
a

iaiai eeH log

( )),|(log)( MSPSScore π−=



GPCR Analysis
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Entropy
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GPCR Analysis (Cont’d)
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Applications of HMM for GPCR
Bacteriorhodopsin

Transmembrane protein with 7 domains
But it is not a GPCR
Compute score and discover that it is close to the regression line. Hence not 
a GPCR.

Thyrotropin receptor precursors
All have long initial loop on INSERT STATE 20.
Also clustering possible based on distance to regression line.
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HMMs – Advantages

Sound statistical foundations
Efficient learning algorithms
Consistent treatment for insert/delete penalties for alignments in the form of 
locally learnable probabilities
Capable of handling inputs of variable length
Can be built in a modular & hierarchical fashion; can be combined into libraries.
Wide variety of applications: Multiple Alignment, Data mining & classification, 
Structural Analysis, Pattern discovery, Gene prediction.
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HMMs – Disadvantages

Large # of parameters.
Cannot express dependencies & correlations between hidden states.
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