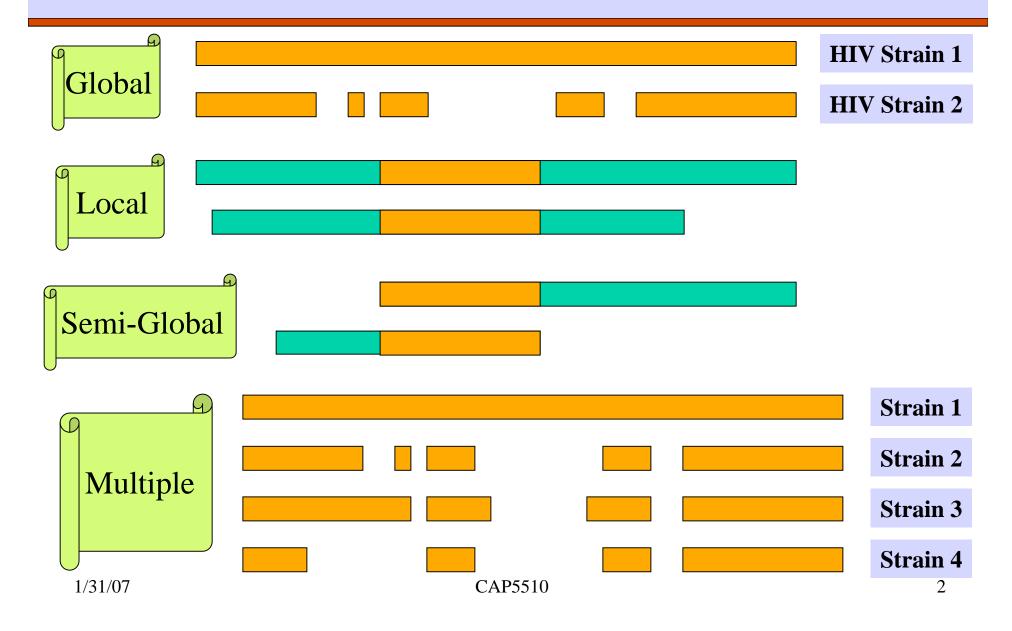
CAP 5510: Introduction to Bioinformatics


Giri Narasimhan

ECS 254; Phone: x3748

giri@cis.fiu.edu

www.cis.fiu.edu/~giri/teach/BioinfS07.html

Types of Sequence Alignments

Alternative Scoring Schemes

		G	Α	Α	Т	Т	С	Α	G	Т	Т	Α
	0	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12
G	-2	× 1	← -1	← -2	← -3	← -4	← -5	← -6	← -7	← -8	← -9	← -10
G	-3	↑-1	× -1	← -3	← -4	← -5	← -6	← -7	× -5	← -7	← -8	← -9
Α	-4	↑-2	× 0	× 0	← -2	← -3	← -4	← -5	← -6	← -7	← -8	× -7
Т	-5	↑-3	↑ -2	↑-2	× 1	← -1	← -2	← -3	← -4	← -5	← -6	← -7
С	-6	↑-4	↑ -3	↑-3	↑-1	× -1	× 0	← -2	← -3	← -4	← -5	← -6
G	-7	↑-5	↑-4	↑-4	↑-2	↑-3	↑-2	× -2	× -1	← -3	← -4	← -5
Α	-8	↑-6	↑-5	↑- 5	↑-3	↑-4	↑-3	× -1	↑-3	× -3	× -5	× -3

Match +1 Mismatch -2 Gap (-2, -1)

Local Sequence Alignment

- □ Example: comparing long stretches of anonymous DNA; aligning proteins that share only some motifs or domains.
- Smith-Waterman Algorithm

Recurrence Relations (Global vs Local Alignments)

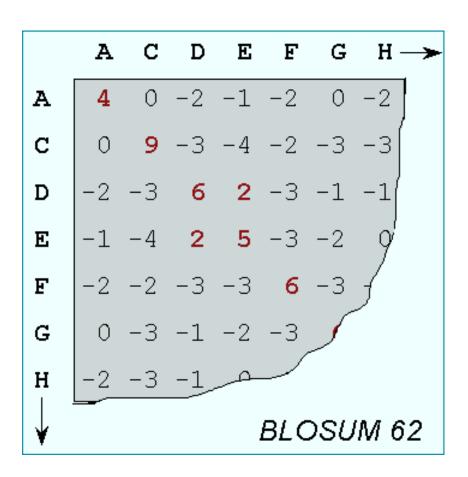
```
\Box S[I, J] = MAXIMUM {
                      S[I-1, J-1] + \delta(V[I], W[J]),
                                                                                          Global
                      S[I-1, J] + \delta(V[I], -)
                                                                                          Alignment
                      S[I, J-1] + \delta(-, W[J])

■ S[I, J] = MAXIMUM { 0,

                       S[I-1, J-1] + \delta(V[I], W[J]),
                      S[I-1, J] + \delta(V[I], -)
                      S[I, J-1] + \delta(-, W[J])
```

Local Alignment

Local Alignment: Example


		G	Α	Α	Т	Т	С	Α	G	Т	Т	Α
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	× 1	0	0	0	0	0	0	0	0	0	0
G	0	× 1	← 0	0	0	0	0	0	× 1	0	0	0
Α	0	0	× 2	× 1	0	0	0	× 1	0	0	0	× 1
Т	0	0	↑ O	× 1	× 2	← 1	0	0	0	× 1	× 1	0
С	0	0	0	0	↑ O	× 0	× 2	0	0	0	0	0
G	0	0	0	0	0	0	0	0	× 1	0	0	0
Α	0	0	× 1	× 1	0	0	0	× 1	0	0	0	× 1

Match +1 Mismatch -1 Gap (-1, -1)

Properties of Smith-Waterman Algorithm

- □ How to find all regions of "high similarity"?
 - Find all entries above a threshold score and traceback.
- What if: Matches = 1 & Mismatches/spaces = 0?
 - Longest Common Subsequence Problem
- \square What if: Matches = 1 & Mismatches/spaces = $-\infty$?
 - Longest Common Substring Problem
- ☐ What if the average entry is positive?
 - Global Alignment

How to score mismatches?

BLOSUM n Substitution Matrices

- For each amino acid pair a, b
 - For each BLOCK
 - > Align all proteins in the BLOCK
 - Eliminate proteins that are more than n% identical
 - \succ Count F(a), F(b), F(a,b)
 - ➤ Compute Log-odds Ratio

$$\log \left(\frac{F(a,b)}{F(a)F(b)} \right)$$

BLAST & FASTA

□ FASTA

[Lipman, Pearson '85, '88]

□ Basic Local Alignment Search Tool

[Altschul, Gish, Miller, Myers, Lipman '90]

BLAST Overview

- Program(s) to search all sequence databases
- ☐ Tremendous Speed/Less Sensitive
- Statistical Significance reported
- WWWBLAST, QBLAST (send now, retrieve results later), Standalone BLAST, BLASTcl3 (Client version, TCP/IP connection to NCBI server), BLAST URLAPI (to access QBLAST, no local client)

BLAST Strategy & Improvements

- Lipman et al.: speeded up finding "runs" of "hot spots".
- □ Eugene Myers '94: "Sublinear algorithm for approximate keyword matching".
- □ Karlin, Altschul, Dembo '90, '91: "Statistical Significance of Matches"

BLAST Variants

- ☐ Nucleotide BLAST
 - Standard blastn
 - MEGABLAST (Compare large sets, Near-exact searches)
 - Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering)
- Protein BLAST
 - Standard blastp
 - PSI-BLAST (Position Specific Iterated BLAST)
 - PHI-BLAST (Pattern Hit Initiated BLAST; reg expr. Or Motif search)
 - Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering, PAM-30)
- □ Translating BLAST
 - Blastx: Search nucleotide sequence in protein database (6 reading frames)
 - Tblastn: Search protein sequence in nucleotide dB
 - Tblastx: Search nucleotide seq (6 frames) in nucleotide DB (6 frames)

1/31/07 CAP5510 13

BLAST Cont'd

RPS BLAST

 Compare protein sequence against Conserved Domain DB; Helps in predicting rough structure and function

☐ Pairwise BLAST

blastp (2 Proteins), blastn (2 nucleotides), tblastn (protein-nucleotide w/ 6 frames), blastx (nucleotide-protein), tblastx (nucleotide w/6 frames-nucleotide w/ 6 frames)

Specialized BLAST

- Human & Other finished/unfinished genomes
- P. falciparum: Search ESTs, STSs, GSSs, HTGs
- VecScreen: screen for contamination while sequencing
- IgBLAST: Immunoglobin sequence database

BLAST Credits

- ☐ Stephen Altschul
- Jonathan Epstein
- David Lipman
- Tom Madden
- Scott McGinnis
- ☐ Jim Ostell
- ☐ Alex Schaffer
- Sergei Shavirin
- Heidi Sofia
- Jinghui Zhang

Databases used by BLAST

Protein

nr (everything), swissprot, pdb, alu, individual genomes

■ Nucleotide

nr, dbest, dbsts, htgs (unfinished genomic sequences), gss, pdb, vector, mito, alu, epd

■ Misc

BLAST Parameters and Output

- ☐ Type of sequence, nucleotide/protein
- Word size, w
- \Box Gap penalties, p_1 and p_2
- Neighborhood Threshold Score, T
- Score Threshold, 5
- E-value Cutoff, E
- Number of hits to display, H
- Database to search, D
- Scoring Matrix, M
- Score s and E-value e
 - E-value e is the expected number of sequences that would have an alignment score greater than the current score s.

Scoring Matrix to Use

PAM 40 Short alignments with high similarity (70-90%)

→ PAM 160 Members of a protein family (50-60%)

PAM 250 Longer alignments (divergent sequences) (~30%)

BLOSUM90 Short alignments with high similarity (70-90%)

BLOSUM80 Members of a protein family (50-60%)

BLOSUM62 Finding all potential hits (30-40%)

BLOSUM30 Longer alignments (divergent sequences) (<30%)</p>

Rules of Thumb

- Most sequences with significant similarity over their entire lengths are homologous.
- Matches that are > 50% identical in a 20-40 aa region occur frequently by chance.
- Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
- \square A homologous to B & B to C \Rightarrow A homologous to C.
- Low complexity regions, transmembrane regions and coiled-coil regions frequently display significant similarity without homology.
- Greater evolutionary distance implies that length of a local alignment required to achieve a statistically significant score also increases.

Rules of Thumb

- Results of searches using different scoring systems may be compared directly using normalized scores.
- If S is the (raw) score for a local alignment, the **normalized** score S' (in bits) is given by

$$S' = \frac{\lambda - \ln(K)}{\ln(2)}$$

 $S' = \frac{\lambda - ln(K)}{ln(2)}$ The parameters depend on the scoring system.

Statistically significant normalized score,

$$S' > \log\left(\frac{N}{E}\right)$$

where E-value = E, and N = size of search space.