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ECS 254; Phone: x3748

giri@cis.fiu.edu

www.cis.fiu.edu/~giri/teach/BioinfS07.html
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Structure Prediction Flowchart

http://www.russell.embl-heidelberg.de/gtsp/flowchart2.html
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Protein Structure: Energy Terms

Hooke’s law description of bond stretching

Energy due to bond angle bending

Energy due to torsional angle rotations

Energy due to non-bonded interactions between

two atoms separated by distance r

Lennard-Jones potential (proportional to r-6

Lennard-Jones potential (proportional to r-12

Electrostatic energy
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Energy Function

J. L. Klepeis, M. J. Pieja and C. A. Floudas ,

Biophysical Journal 84:869-882 (2003) 
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Pattern Discovery
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What we have discussed so far

Why Pattern discovery?

Types of patterns

How to represent and store patterns?

Types of pattern discovery

Supervised pattern discovery

Motif Detection

Unsupervised pattern discovery

Evaluation of pattern discovery
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Unaligned Pattern DiscoveryUnaligned Pattern Discovery

Rigoutsos & Floratos, Bioinformatics, ’98

TEIRESIAS: 
The algorithm is similar to that used in GYM for aligned 
Pattern discovery.

TEIRESIAS

Protein 
Sequence
Database

Seqlet Dictionary

A..GV

L..H…H

Y.C..C…F

V..G..G.G.T.L
• 

• 

• 
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TEIRESIAS: Key Features

Starts with a set of seed patterns (Enumeration step)

Convolution operator applied to all pairs of patterns:

 A..GV.S  V.S.GR = A..GV.S.GR

Order of Evaluation carefully chosen so that long patterns

get longer first

Finds all maximal patterns.

Combinatorial explosion avoided by generating only relevant

maximal patterns.

Rigoutsos & Floratos, Bioinformatics, ’98



2/26/08 CAP5510 9

SPLASH

Structural Pattern Localization Analysis by Sequential

Histogram (SPLASH)

Not limited to fixed alphabet size

Patterns are modeled by a homology metric and thus allow

mismatches

Early pruning of inconsistent seed patterns, leading to

increased efficiency.

Easily parallelized with availability of extra resources.

Califano, Bioinformatics, ’00; Califano et al., J Comput Biol, ’00
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Precomputed Sequence Patterns

PROSITE

BLOCKS and PRINTS

eMOTIF

SPAT

PRODOM

Pfam
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Motif Detection Tools

PROSITE (Database of protein families & domains)

Try PDOC00040. Also Try PS00041

PRINTS Sample Output

BLOCKS (multiply aligned ungapped segments for highly conserved

regions of proteins; automatically created) Sample Output

Pfam (Protein families database of alignments & HMMs)

Multiple Alignment, domain architectures, species distribution, links: Try

MoST

PROBE

ProDom

DIP
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Protein Information Sites

 is a database of protein families, domains and

functional sites in which identifiable features found in known

proteins can be applied to unknown protein sequences. See

sample.
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Modular Nature of Proteins

Proteins are collections of “modular” domains. For example,

F2 E E

EF2

F2

     K          K     

     K        Catalytic Domain 

   Catalytic Domain 

PLAT

Coagulation Factor XII
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Domain Architecture Tools

CDART

Protein AAH24495; Domain Architecture;

It’s domain relatives;

Multiple alignment for 2nd domain

SMART
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Predicting Specialized Structures

COILS – Predicts coiled coil motifs

TMPred – predicts transmembrane regions

SignalP – predicts signal peptides

SEG – predicts nonglobular regions
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Patterns in DNA Sequences

Signals in DNA sequence control events

Start and end of genes

Start and end of introns

Transcription factor binding sites (regulatory elements)

Ribosome binding sites

Detection of these patterns are useful for

Understanding gene structure

Understanding gene regulation
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Motifs in DNA Sequences

Given a collection of DNA sequences of promoter regions, locate the

transcription factor binding sites (also called regulatory elements)

Example:

http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html
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Motifs

http://weblogo.berkeley.edu/examples.html
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Motifs in DNA
Sequences

http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html
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More Motifs in
E. Coli DNA
Sequences

http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html
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http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html
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Other Motifs in
DNA

Sequences:
Human Splice

Junctions

http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html



2/26/08 CAP5510 23

Motifs in DNA Sequences
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Gene

Gene-Specific TF
Binding Sites

TATA BoxCAT Box

Basal TF
Binding Sites

coding region
upstream region

Transcription Regulation
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TF

25

Single Gene Activation

Gene

Gene

TF binding site

TF Transcription Factor
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TF

TF

TF

26

Multiple Gene Activation

Gene

TF binding site

TF Transcription Factor
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Mississippi State University

27

Single Gene Activation

TF
Gene
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Multiple Gene Activation

TF

TF

TF
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DNA

Transcription Regulation

TF

TFBS

Gene
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Transcription Regulation

DNA

TF

TFBS

Gene Co-regulated genes
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Transcription Regulation

[ Goffart et al. Exp. Physiology (2003) ]
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Problem: Given the upstream regions of all genes in the genome, find all

over-represented sequence signatures.

Motif-prediction: Whole genome
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Basic Principle: If a TF co-regulates many genes, then all these genes

should have at least 1 binding site for it in their upstream region.

Motif-prediction: Whole genome

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Binding sites for TF
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Motif Detection (TFBMs)

See evaluation by Tompa et al.

[bio.cs.washington.edu/assessment]

Gibbs Sampling Methods: AlignACE, GLAM, SeSiMCMC, MotifSampler

Weight Matrix Methods: ANN-Spec, Consensus,

EM: Improbizer, MEME

Combinatorial & Misc.: MITRA, oligo/dyad, QuickScore, Weeder, YMF
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Predicting Motifs in Whole Genome

MEME: EM algorithm [ Bailey et al., 1994 ]

AlignACE: Gibbs Sampling Approach [ Hughes et al., 2000 ]

Consensus: Greedy Algorithm Based [ Hertz et al., 1990 ]

ANN-Spec:  Artificial Neural Network and a Gibbs

      sampling method [ Workman et al., 2000 ]

YMF: Enumerative search [Sinha  et al., 2003 ]

…
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Input: upstream sequences

X = {X1, X2, …, Xn},

Motif profile: 4°¡k matrix ¶» = (¶»rp),

r  {A,C,G,T}

1  p  k

¶»rp = Pr(residue r in position p of motif)

Background distribution:

¶»r0 = Pr(residue r in background)

EM Method: Model Parameters
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Z = {Zij}, where

1, if motif instance starts at
Zij = position i of Xj

0, otherwise

Iterate over probabilistic models that could
generate X and Z, trying to converge on this
solution

{

EM Method: Hidden Information
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Statistical Evaluation

Z-score of a motif with a certain

frequency:

Information Content or Relative

Entropy of an alignment or profile:

Maximum a Posteriori (MAP) Score:

Model Vs Background Score:
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M-step: Build a new profile by using every m-window, but weighting each one

with value zij.

Initialize: random profile

EM Algorithm

E-step: Using profile, compute a likelihood value zij for each m-window at

position i in input sequence j.

Stop if converged

MEME [Bailey, Elkan 1994]

Goal: Find ¶», Z that maximize Pr (X, Z | ¶»)
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Gibbs Sampling for Motif Detection
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Prokaryotic Gene Characteristics


