CAP 5510: Introduction to Bioinformatics

Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/BioinfS07.html

How to Represent Patterns

- Consensus sequence
- Alignments
- LOGO format
- Frequency Matrices
- Weight Matrices (Profiles, PSSMs, PWMs)

Pattern Representations

Consensus sequences

[Pribnov TACGAT	v, 1975]
TATAAT	
TATAAT	
GATACT	
TATGAT	
TATGTT	
TATAAT	Consensus
TATRNT	Consensus w/ IUPAC
— — — — — — — — — —	Multi lovol
TATAAT	
G CGC	Consensus
Т	

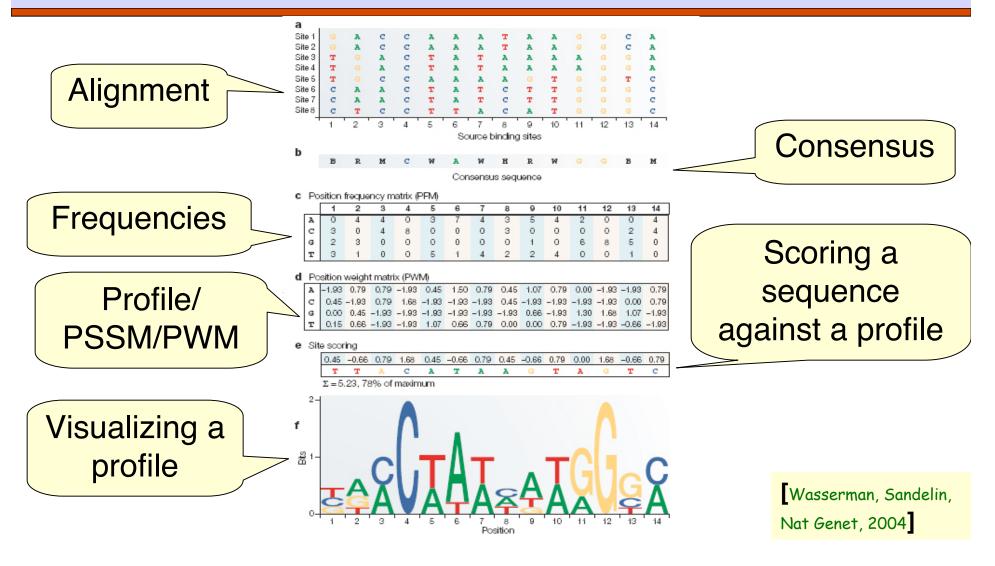
Needs Alignment

Pattern Representations

Consensus sequences

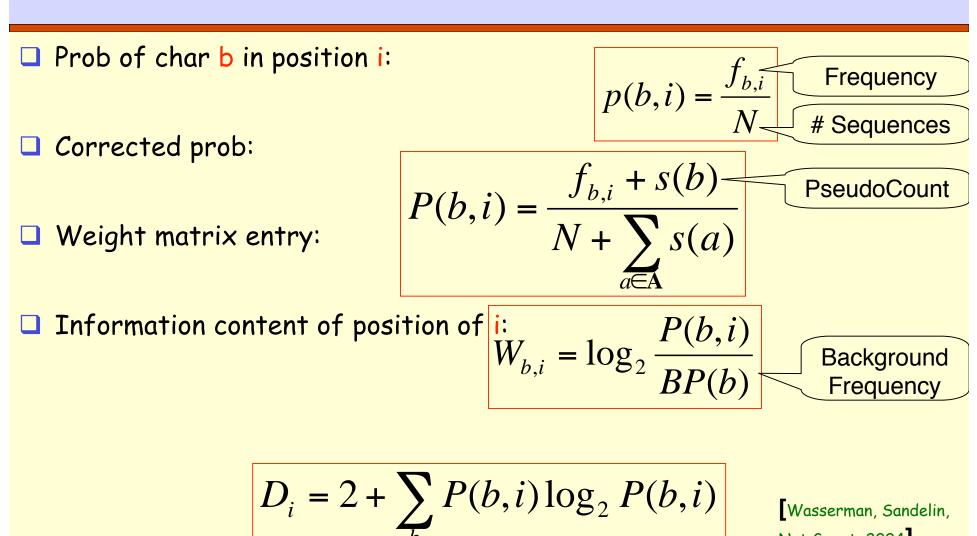
- Weight Matrices (Profiles, PSSMs)
 - Frequency Counts
 - Relative Frequency Measures
 - Normalized Measures
 - Log-transformed Measures
 - Information content
 - "Logo" technique
 - HMMs

Pattern Representation: Weight Matrix



CAP5510

Formulae



Statistical Evaluation Fundamentals

Probability of finding a sequence w in some position of a DNA/protein sequence (assuming independence at each position)

$$Pr(w_i) = BP(b) [Background Frequency] Pr(W) = \prod_{i=1}^{m} Pr(W_i)$$

Statistical Evaluation

Z-score of a motif with a certain frequency:

$$\Rightarrow z(w) = \frac{Obs(w) - Exp}{\sqrt{Var(w)}}$$

- Information Content or Relative Entropy of an alignment or profile:
- Maximum a Posteriori (MAP) Score:

Model Vs Background Score:

$$V^{VUI}(W)$$

$$IC(M) = \sum_{i=1}^{4} \sum_{j=1}^{m} m_{i,j} \log \frac{m_{i,j}}{b_i}$$

$$MAP(M) = -\sum_{i=1}^{4} \sum_{j=1}^{m} n_{i,j} \log \frac{m_{i,j}}{b_i}$$

$$L(w) = \frac{\Pr(w \mid M)}{\Pr(w \mid Bg)} = \prod_{j=1}^{m} \frac{m_{i,j}}{b_i}$$

-Exp(w)

Pattern Discovery in Protein Sequences

Motifs are combinations of secondary structures in proteins with a specific **structure** and a specific **function**. They are also called **super-secondary structures**.

Examples: Helix-Turn-Helix, Zinc-finger, Homeobox domain, Hairpin-beta motif, Calcium-binding motif, Beta-alpha-beta motif, Coiled-coil motifs.

Several motifs may combine to form **domains**.

• Serine proteinase domain, Kringle domain, calcium-binding domain, homeobox domain.

Motif Detection

- Profile Method
 - If many examples of the motif are known, then
 - > Training: build a Profile and compute a threshold
 - > Testing: score against profile
- Combinatorial Pattern Discovery Methods
- Gibbs Sampling
- Expectation Method

How to evaluate these methods?

- Calculate TP, FP, TN, FN
- Compute sensitivity fraction of known sites predicted, specificity, and more.
 - Sensitivity = TP/(TP+FN)
 - Specificity = TN/(TN+FN)
 - Positive Predictive Value = TP/(TP+FP)
 - Performance Coefficient = TP/(TP+FN+FP)
 - Correlation Coefficient =

Motif Detection Problem

Input:

Output:

Set, S, of known (aligned) examples of a motif M, A new protein sequence, P.

Does P have a copy of the motif M?

Example: Zinc Finger Motif ...YKCGLCERSFVEKSALSRHORVHKN...

Database, D, of known protein sequences, A new protein sequence, P.

What interesting patterns from D are present in P?

Supervised Pattern Discovery

Input: Alignment of known motifs, and

Query sequence

<u>Output</u>: Is the query sequence a motif?

Profile Method [Gribskov et al., 1996]

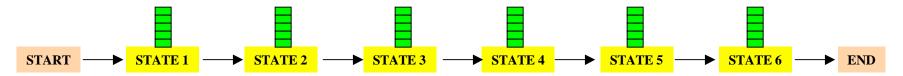
- Build a profile from the alignment and score query sequence against the profile to decide if it "fits the profile".
- > Need to pick a threshold score.

Enumerative/Combinatorial Methods

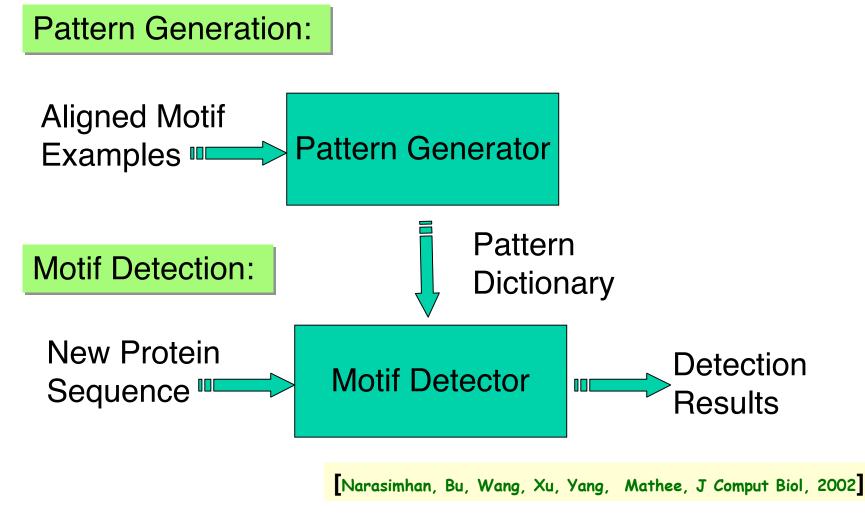
Profile HMMs

PROFILE METHOD, [M. Gribskov et al., '90]

Location		S	Sec	Protein			
in Seq.	1	2	3	4	5	6	Name
14	G	V	S	А	S	A	Ka RbtR
32	G	v	S	Е	М	т	Ec DeoR
33	G	V	S	Ρ	G	т	Ec RpoD
76	G	A	G	I	A	т	Ec TrpR
178	G	С	S	R	Е	т	Ec CAP
205	C	L	S	Ρ	S	R	Ec AraC
210	C	L	S	Ρ	S	R	St AraC
13	G	v	Ν	к	Е	т	Br MerR

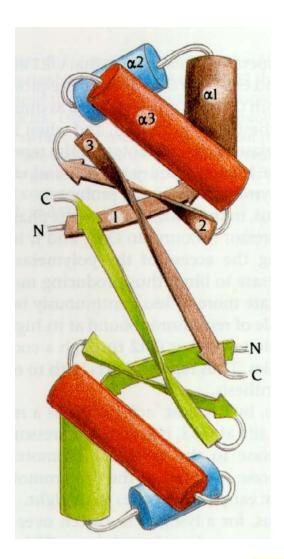


Combinatorial Method: GYM



Helix-Turn-Helix Motifs

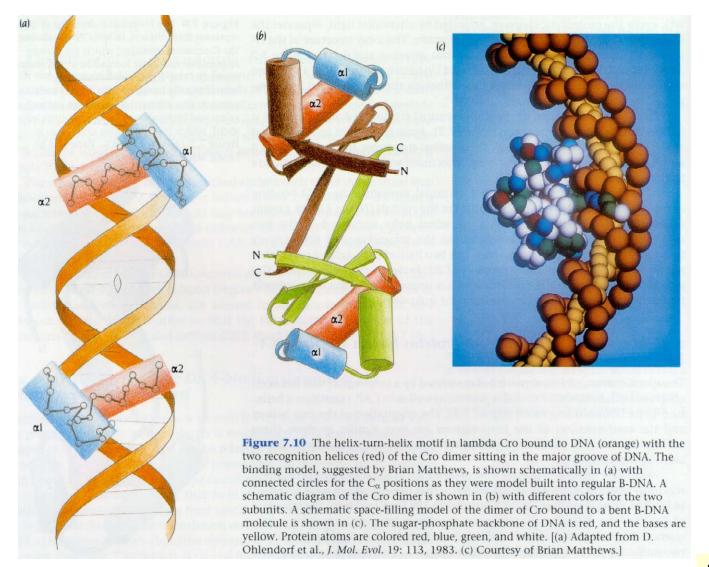
- Structure
 - 3-helix complex
 - Length: 22 amino acids
 - Turn angle
- Function
 - Gene regulation by binding to DNA



CAP5510

16

DNA Binding at HTH Motif



2/26/08

17

HTH Motifs: Examples

Loc	Protein				Не	elix 2	?					T	urn					ŀ	lelix	3			
	Name	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
14	Cro	F	G	Q	E	К	Т	Α	Κ	D	L	G	V	Y	Q	S	Α		Ν	К	Α		Н
16	434 Cro	М	Т	Q	Т	Е	L	А	Т	Κ	А	G	V	Κ	Q	Q	S	I	Q	L	Ι	Е	А
11	P22 Cro	G	Т	Q	R	А	V	А	Κ	А	L	G	I	S	D	А	А	V	S	Q	W	К	Ε
31	Rep	L	S	Q	Ε	S	V	А	D	Κ	М	G	М	G	Q	S	G	V	G	А	L	F	Ν
16	434 Rep	L	Ν	Q	Α	Е	L	А	Q	Κ	V	G	Т	Т	Q	Q	S	I	Ε	Q	L	Е	Ν
19	P22 Rep	I	R	Q	Α	А	L	G	Κ	М	V	G	V	S	Ν	V	А	I	S	Q	W	Е	R
24	CII	L	G	Т	Ε	Κ	Т	А	Ε	А	V	G	V	D	Κ	S	Q	I	S	R	W	К	R
4	LacR	V	Τ	L	Y	D	V	А	Ε	Y	А	G	V	S	Y	Q	Τ	V	S	R	V	V	Ν
167	CAP	I	Т	R	Q	Е	I	G	Q	Ι	V	G	С	S	R	Е	Т	V	G	R	Ι	L	Κ
66	TrpR	Μ	S	Q	R	Е	L	Κ	Ν	Е	L	G	А	G	Ι	А	Т	I	Т	R	G	S	Ν
22	BlaA Pv	L	Ν	F	Т	Κ	А	А	L	Е	L	Y	V	Т	Q	G	А	V	S	Q	Q	V	R
23	TrpI Ps	Ν	S	V	S	Q	А	А	Ε	Q	L	Η	V	Т	Η	G	А	V	S	R	Q	L	Κ

Combinatorial Method: GYM

- Combinations of residues in specific locations (may not be contiguous) contribute towards stabilizing a structure.
- Some reinforcing combinations are relatively rare.
- GYM algorithm is inspired by the APriori algorithm [Agrawal et al., 1996]

Narasimhan, Bu, Wang, Xu, Yang, Mathee, J Comput Biol, 2002

Patterns

Loc	Protein		Helix 2									T	urn		Helix 3								
	Name	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
14	Cro	F	G	Q	Ε	Κ	Т	Α	Κ	D	L	G	V	Y	Q	S	Α	I	Ν	Κ	Α	I	Н
16	434 Cro	М	Т	Q	Т	Е	L	А	Т	Κ	А	G	V	К	Q	Q	S	I	Q	L	Ι	Е	А
11	P22 Cro	G	Т	Q	R	А	V	А	Κ	А	L	G	I	S	D	А	А	V	S	Q	W	Κ	Ε
31	Rep	L	S	Q	Ε	S	V	А	D	Κ	М	G	Μ	G	Q	S	G	V	G	А	L	F	Ν
16	434 Rep	L	Ν	Q	А	Е	L	А	Q	Κ	V	G	Т	Т	Q	Q	S	I	E	Q	L	Е	Ν
19	P22 Rep	I	R	Q	А	А	L	G	Κ	М	V	G	V	S	Ν	V	А	I	S	Q	W	Е	R
24	СП	L	G	Т	Ε	Κ	Т	Α	Ε	А	V	G	V	D	Κ	S	Q	I	S	R	W	Κ	R
4	LacR	V	Т	L	Y	D	V	А	Е	Y	А	G	V	S	Y	Q	Т	V	S	R	V	V	Ν
167	CAP	I	Τ	R	Q	Е	Ι	G	Q	Ι	V	G	С	S	R	Е	Т	V	G	R	Ι	L	Κ
66	TrpR	Μ	S	Q	R	Е	L	Κ	Ν	Е	L	G	А	G	I	А	Т	I	Т	R	G	S	Ν
22	BlaA Pv	L	Ν	F	Т	Κ	А	А	L	Е	L	Y	V	Т	Q	G	А	V	S	Q	Q	V	R
23	TrpI Ps	Ν	S	V	S	Q	А	А	Ε	Q	L	Η	V	Т	Н	G	А	V	S	R	Q	L	Κ

Q1 G9 N20 A5 G9 V10 I15

Pattern Mining Algorithm

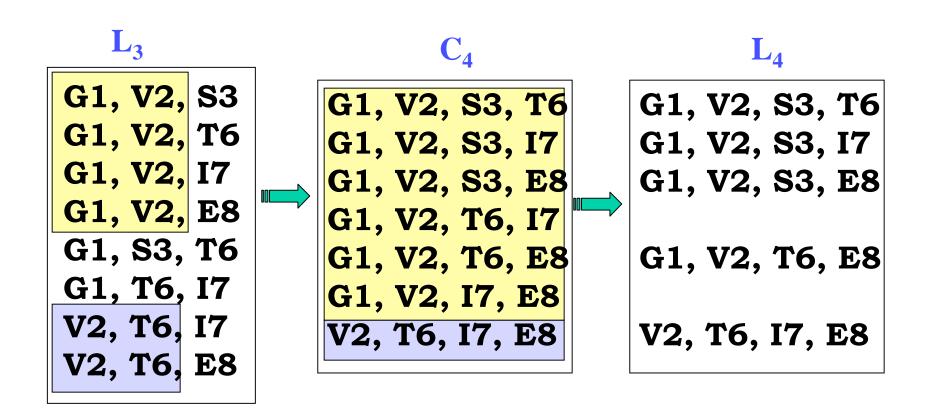
Algorithm Pattern-Mining

Input: Motif length m, support threshold T, list of aligned motifs M.

Output: Dictionary L of frequent patterns.

- 1. $L_1 :=$ All frequent patterns of length 12. for i = 2 to m do3. $C_i :=$ Candidates (L_{i-1}) 4. $L_i :=$ Frequent candidates from C_i 5. if $(|L_i| <= 1)$ then
- 6. **return** L as the union of all L_j , $j \le i$.

Candidates Function



Motif Detection Algorithm

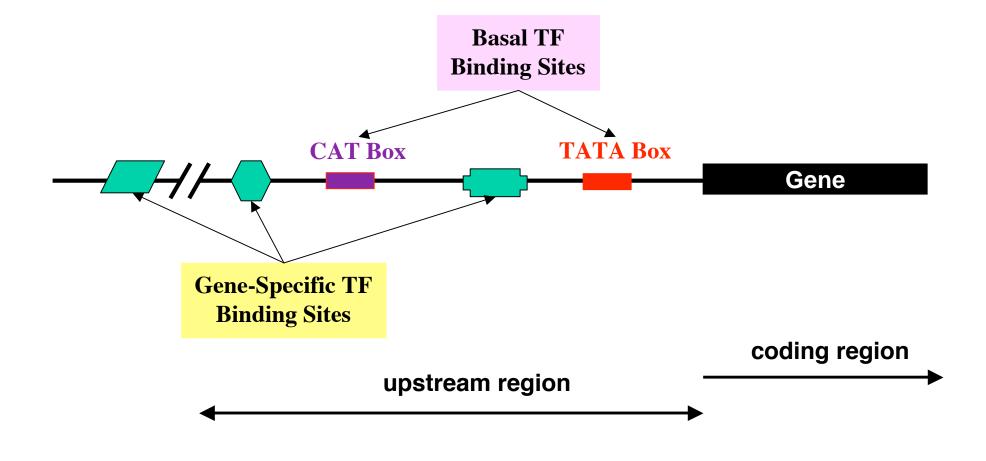
Algorithm Motif-Detection

- InputMotif length m,
threshold score T,
pattern dictionary L,
and input protein sequence P[1..n].OutputDetected motif(s).
- 1. for each location i do
- 2. S := MatchScore(P[i..i+m-1], L).
- 3. if (S > T) then
- 4. Report it as a possible motif

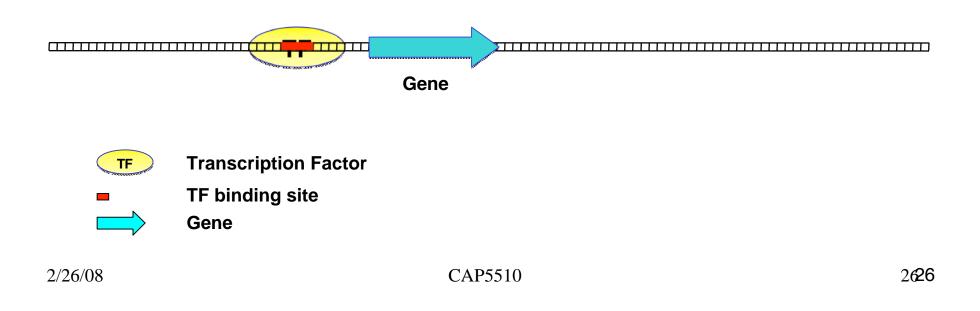
Experimental Results: GYM 2.0

Motif	Protein Family	Number Tested	GYM = DE Agree	Number Annotated	GYM = Annot.
HTH	Master	88	88 (100 %)	13	13
Motif	Sigma	314	284 + 23 (98 %)	96	82
(22)	Negates	93	86 (<mark>92 %</mark>)	0	0
	LysR	130	127 (98 %)	95	93
	AraC	68	57 (84 %)	41	34
	Rreg	116	99 (<mark>85 %</mark>)	57	46
	Total	675	653 + 23 (<mark>94 %</mark>)	289	255 (88 %)

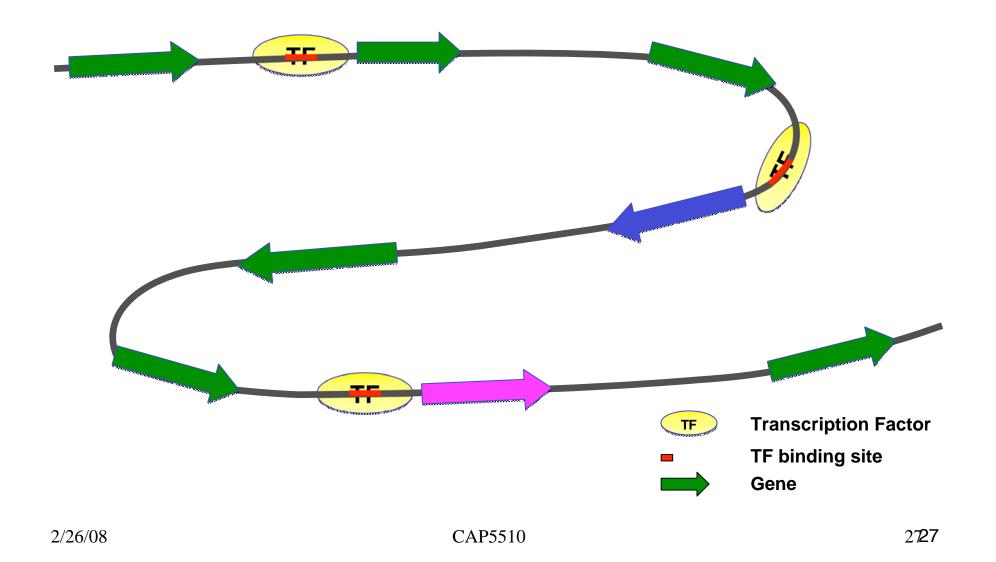
Transcription Regulation



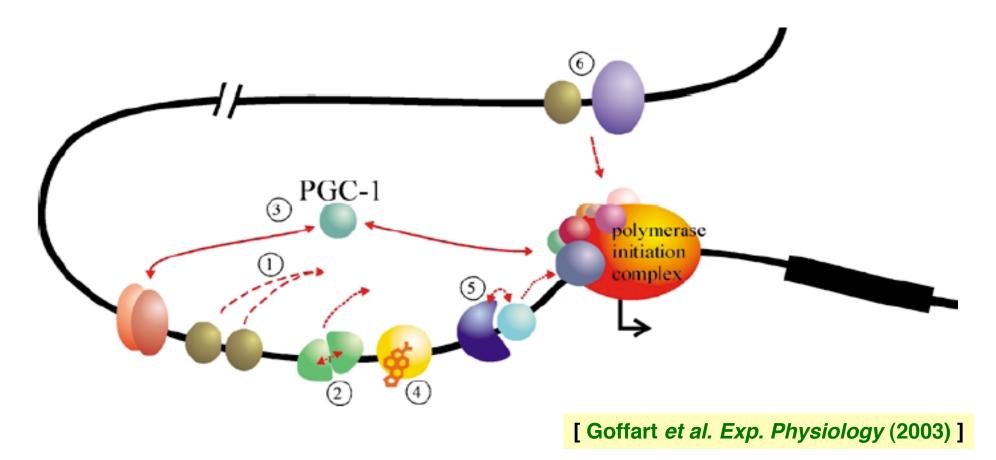
Single Gene Activation



Multiple Gene Activation



Transcription Regulation

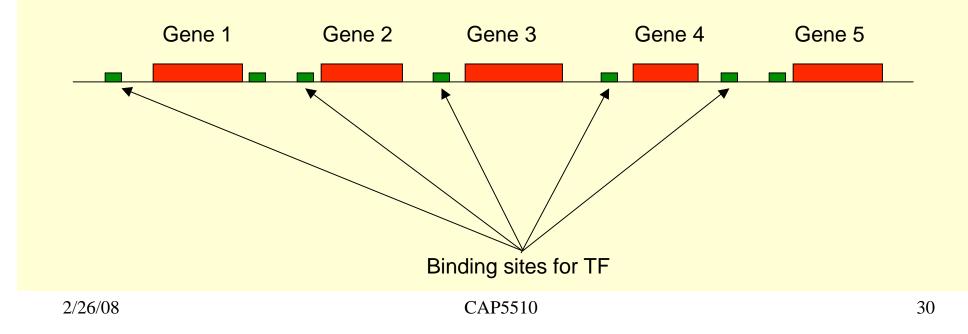


Motif-prediction: Whole genome

Problem: Given the upstream regions of all genes in the genome, find all over-represented sequence signatures.

Motif-prediction: Whole genome

Basic Principle: If a TF co-regulates many genes, then all these genes should have at least 1 binding site for it in their upstream region.



Motif Detection (TFBMs)

- See evaluation by Tompa et al.
 - [bio.cs.washington.edu/assessment]
- Gibbs Sampling Methods: AlignACE, GLAM, SeSiMCMC, MotifSampler
- Weight Matrix Methods: ANN-Spec, Consensus,
- **EM**: Improbizer, MEME
- Combinatorial & Misc.: MITRA, oligo/dyad, QuickScore, <u>Weeder</u>, YMF

Predicting Motifs in Whole Genome

□ MEME: EM algorithm [Bailey et al., 1994]

- □ AlignACE: Gibbs Sampling Approach [Hughes et al., 2000]
- Consensus: Greedy Algorithm Based [Hertz et al., 1990]
- ANN-Spec: Artificial Neural Network and a Gibbs sampling method [Workman et al., 2000]
- □ YMF: Enumerative search [Sinha et al., 2003]

EM Method: Model Parameters

Input: upstream sequences

- $\succ \qquad \mathsf{X} = \{\mathsf{X}_1, \mathsf{X}_2, \ldots, \mathsf{X}_n\},\$
- Motif profile: 4°k matrix ¶× (¶*),
 - r ∈ {A,C,G,T}
 - 1 ≤ p ≤ k
 - ¶_p = Pr(residue r in position p of motif)

Background distribution:

> \P_{h} = Pr(residue r in background)

CAP5510

EM Method: Hidden Information

$\Box Z = \{Z_{ij}\}, where$

$Z_{ij} = \begin{cases} 1, & \text{if motif instance starts at} \\ & \text{position i of } X_j \\ 0, & \text{otherwise} \end{cases}$

□Iterate over probabilistic models that could generate X and Z, trying to converge on this solution

Statistical Evaluation

Z-score of a motif with a certain frequency:

$$\Rightarrow z(w) = \frac{Obs(w) - Var}{\sqrt{Var}}$$

MAP(M) =

L(w)

- Information Content or Relative Entropy of an alignment or profile:
- Maximum a Posteriori (MAP) Score:

Model Vs Background Score:

$$\sqrt{Var(w)}$$

$$IC(M) = \sum_{i=1}^{4} \sum_{j=1}^{m} m_{i,j} \log \frac{m_{i,j}}{b_i}$$

$$MAP(M) = -\sum_{i=1}^{4} \sum_{j=1}^{m} n_{i,j} \log \frac{m_{i,j}}{b_i}$$

 $\mathbf{T}(w \mid M)$

 $\Pr(w \mid Bg)$

35 Frequencies

i=1

Exp(w)

(...)

 $n_{i,i} \log$

 b_i

 $m_{i,j}$

 b_i

EM Algorithm

Goal: Find \P > Z that maximize Pr (X, Z | \P)

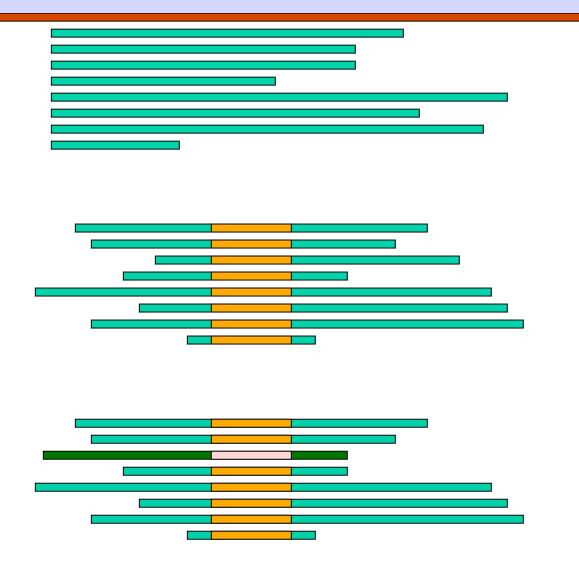
Initialize: random profile

E-step: Using profile, compute a likelihood value z_{ij} for each *m*-window at position *i* in input sequence *j*.

M-step: Build a new profile by using every *m*-window, but weighting each one with value z_{ii} .

MEME [Bailey, Elkan 1994]

Gibbs Sampling for Motif Detection



CAP5510

Prokaryotic Gene Characteristics

DNA PATTERNS IN THE E. coli lexa GENE

	GENE SEQUENCE	PATTERN
l	GAATTCGATAAATC TCTGGTTTATTGTGC AGTTTATGGTT TT	CTGN NNNNN NNNNC AG TTGA CA
41	CCAAAATCGCCTTTTGCTG TATATACTCACAGCATAACTG	CTGN NNNNNNNNN AG
	CCAA -35 -10 TATACT >	TATAAT, > mRNA start
81	TATA TACAC CCAGGGGGGGGGAATGAAAGC GTTAA CGGCC A	CTGNNNNNNNNNN AG
	+10 GGGGG Ribosomal binding site	GGAGG
121	GGCAACAAGAGGTGTTTGATCTCATCCGTGATCACATCAG	
161	CCAGACAGGTATGCCGCCGACGCGTGCGGAAATCGCGCAG	ATG
201	CGTTTGGGGTTCCGTTCCCCAAACGCGGCTGAAGAACATC	
241	TGAAGGCGCTGGCACGCAAAGGCGTTATTGAAATTGTTTC	
281	CGGC GCATC ACGCGGGATTCGTCTGTTGC AGGAA GAGGA A	
321	GAAGGGTTGCCGCTGGTAGGTCGTGTGGCTGCCGGTGAAC	
361	CACTTCTGGCGCAACAGCATATTGAAGGTCATTATCAGGT	OPEN READING FRAME
401	CGATCCTTC CTTATTCAAGCCGAATGCTGATTTC CTGCTG	
441	CGCGTCAGC GGGATGTCGATGAAAGATATCGGCATTATGG	
481	ATGGTGACTTGCTGGCAGTGCATA AAACTCAGGATGTACG	
521	TAAC GGTCA GGTCGTTGTC GCACGTATTGATGAC GAAGTT	
L'OC	XXXIIIMACCCCICABBBBBBBBBBBBBBBBBBBBBBBBBBBB	
601	TGTTGCCAGAAAATAGCGAGTTTAAACCAATTGTCGTTGA	
641	CCTTCGTCAGCAGAGCTTCACCATTGAAGGGCTGGCGGTT	
681	GGGGTTATTCGCAACGGCGACTGGCTGTAACATATCTCTG	TAA
	AGACCGCGATGCCGCCTGGCGTCGCGGTTTGTTTTCATC	
	TCTCTTCATCAGGCTTGTCTGCATGGCATTCCTCACTTCA	
	TCTGATAAAGCACTCTGGCATCTCGCCTTACCCATGATTT	
841	TCTCCAATATCACCGTTCCGTTGCTGGGACTGGTCGATAC	
	GGCGGTAATTGGTCATCTTGATAGCCCCGGTTTATTTGGGC	
	GGCGTGGCGGTTGGCGCAACGGCGGACCAGCT	

Shown are matches to approximate consensus binding sites for LexA repressor (CTGANNINNANNACAG), the -10 amd -35 promoter regions relative to the start of the mRNA (TTGACA and TATAAT), the ribosomal binding site on the mRNA (GGAGG), and the open reading frame (ATG...TAA). Only the second two of the predicted LexA binding sites actually bind the repressor.

FIGURE 9.6. The promoter and open reading frame of the E. coli lexA gene.

Gene Expression

- Process of transcription and/or translation of a gene is called gene expression.
- Every cell of an organism has the same genetic material, but different genes are expressed at different times.
- Patterns of gene expression in a cell is indicative of its state.

Hybridization

- If two complementary strands of DNA or mRNA are brought together under the right experimental conditions they will hybridize.
- $\Box A hybridizes to B \Rightarrow$
 - A is reverse complementary to B, or
 - A is reverse complementary to a subsequence of B.
- It is possible to experimentally verify whether A hybridizes to B, by labeling A or B with a radioactive or fluorescent tag, followed by excitation by laser.

Measuring gene expression

- Gene expression for a single gene can be measured by extracting mRNA from the cell and doing a simple hybridization experiment.
- Given a sample of cells, gene expression for every gene can be measured using a single <u>microarray</u> experiment.

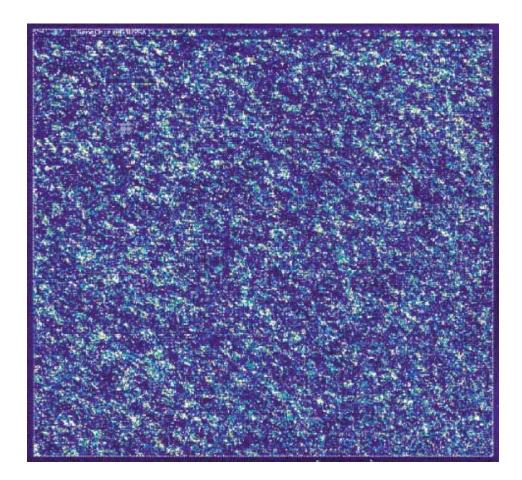
Microarray/DNA chip technology

- High-throughput method to study gene expression of thousands of genes simultaneously.
- Many applications:
 - Genetic disorders & Mutation/polymorphism detection
 - Study of disease subtypes
 - Drug discovery & toxicology studies
 - Pathogen analysis
 - Differing expressions over time, between tissues, between drugs, across disease states

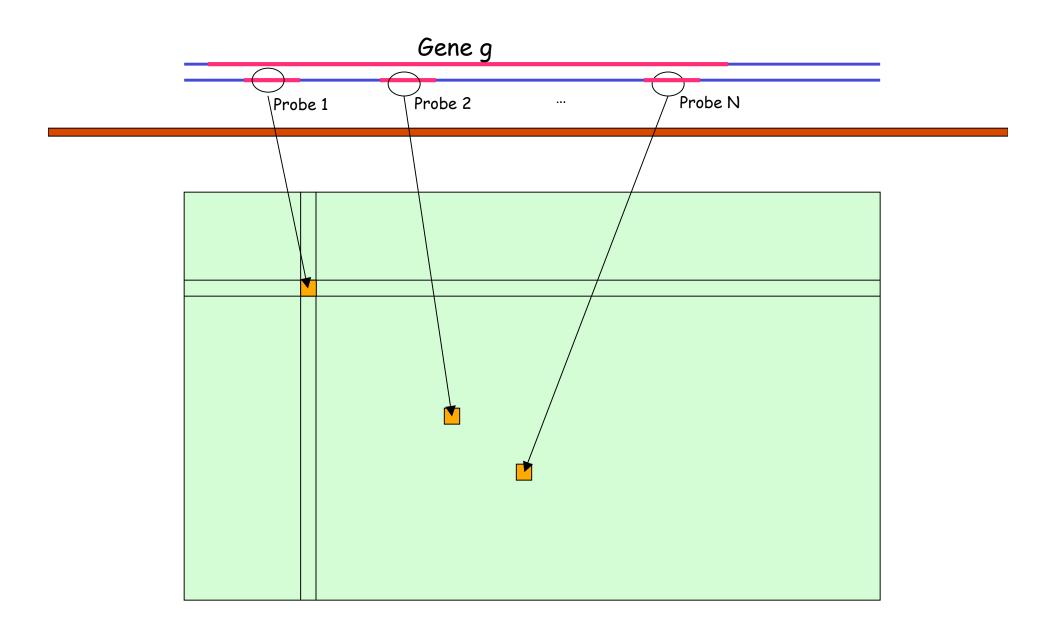
Microarray Data

Gene	Expression Level
Gene1	
Gene2	
Gene3	

Gene Chips



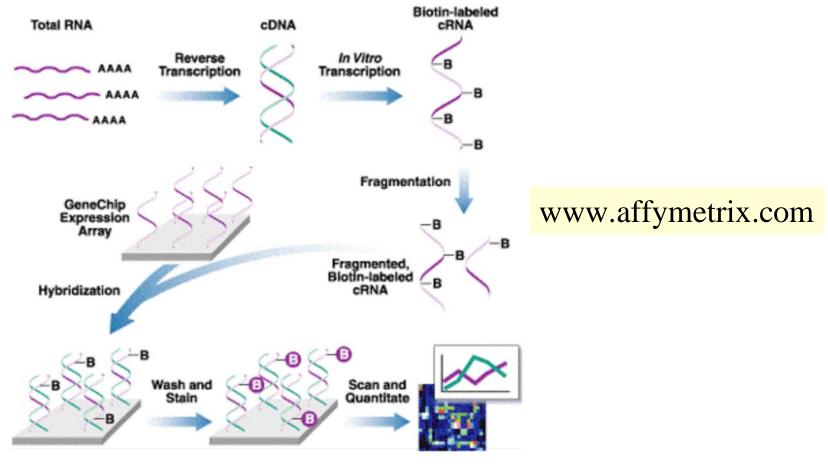
CAP5510



Microarray/DNA chips (Simplified)

- Construct probes corresponding to reverse complements of genes of interest.
- Aicroscopic quantities of probes placed on solid surfaces at defined spots on the chip.
- Extract mRNA from sample cells and label them.
- Apply labeled sample (mRNA extracted from cells) to every spot, and allow hybridization.
- Wash off unhybridized material.
- Use optical detector to measure amount of fluorescence from each spot.

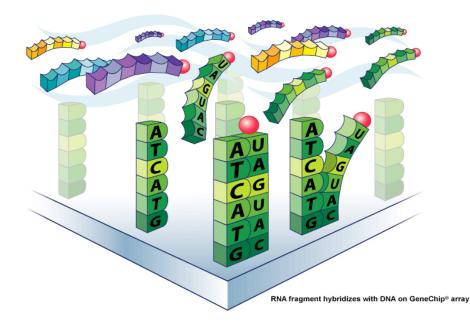
Affymetrix DNA chip schematic



2/26/08

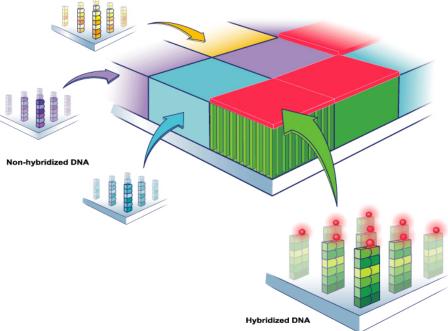
CAP5510

What's on the slide?

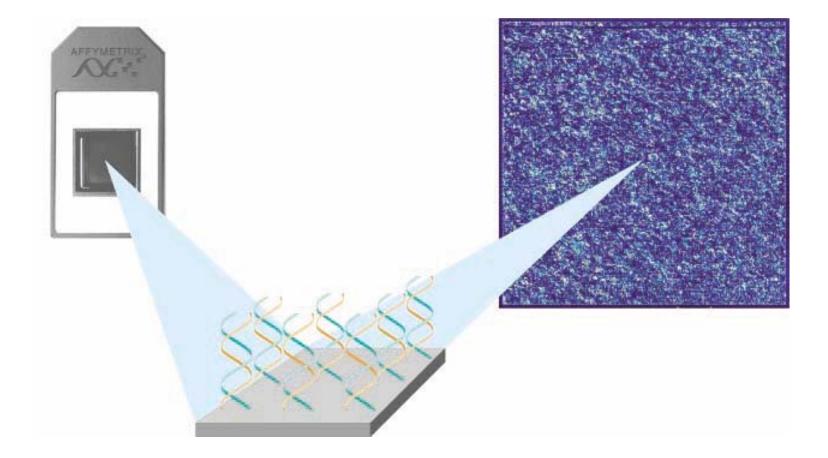


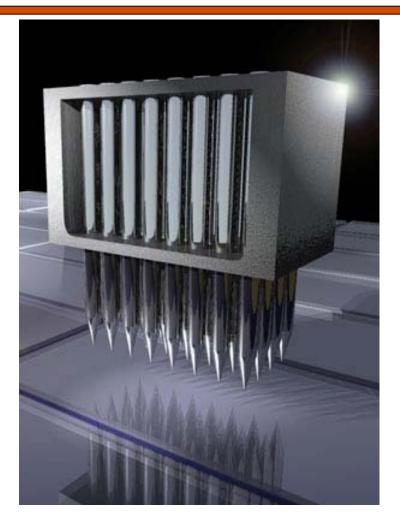
RNA fragments with fluorescent tags from sample to be tested

Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow



DNA Chips & Images





Microarrays: competing technologies

- Affymetrix & Agilent
- Differ in:
 - method to place DNA: Spotting vs. photolithography
 - Length of probe
 - Complete sequence vs. series of fragments