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CAP 5510: Introduction to Bioinformatics

Giri Narasimhan
ECS 254; Phone: x3748

giri@cis.fiu.edu

www.cis.fiu.edu/~giri/teach/BioinfS07.html
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Sample

Treated Sample(t1)                                Expt 1

Treated Sample(t2)                                   Expt 2

Treated Sample(t3)                                       Expt 3

…

Treated Sample(tn)                                         Expt n

Study effect of treatment over time
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http://www.arabidopsis.org/info/2010_projects/comp_proj/AFGC/RevisedAFGC/Friday/
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How to compare 2 cell samples with Two-Color
Microarrays?

mRNA from sample 1 is extracted and labeled with a red

fluorescent dye.

mRNA from sample 2 is extracted and labeled with a green

fluorescent dye.

Mix the samples and apply it to every spot on the

microarray. Hybridize sample mixture to probes.

Use optical detector to measure the amount of green and

red fluorescence at each spot.
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Variations in cells/individuals

Variations in mRNA extraction, isolation, introduction of dye, variation
in dye incorporation, dye interference

Variations in probe concentration, probe amounts, substrate surface
characteristics

Variations in hybridization conditions and kinetics

Variations in optical measurements, spot misalignments, discretization
effects, noise due to scanner lens and laser irregularities

Cross-hybridization of sequences with high sequence identity

Limit of factor 2 in precision of results

Variation changes with intensity: larger variation at low or high
expression levels

Sources of Variations & Experimental Errors

Need to Normalize data
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Clustering
Clustering is a general method to study patterns in

gene expressions.

Several known methods:

Hierarchical Clustering (Bottom-Up Approach)

K-means Clustering (Top-Down Approach)

Self-Organizing Maps (SOM)
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Hierarchical Clustering: Example
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A Dendrogram
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Hierarchical Clustering [Johnson, SC, 1967]

Given n points in Rd, compute the distance between
every pair of points

While (not done)
Pick closest pair of points si and sj and make them part of
the same cluster.

Replace the pair by an average of the two sij

Try the applet at:
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html
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Distance Metrics

For clustering, define a distance function:

Euclidean distance metrics

Pearson correlation coefficient

k=2: Euclidean Distance
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Clustering of gene expressions

Represent each gene as a vector or a point in d-

space where d is the number of arrays or

experiments being analyzed.
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From Eisen MB, et al, PNAS 1998 95(25):14863-8 

Clustering Random vs. Biological 

Data
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K-Means Clustering: Example

Example from Andrew Moore’s tutorial on Clustering.
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Start
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Start

End
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K-Means Clustering [McQueen 67]

Repeat
Start with randomly chosen cluster centers

 Assign points to give greatest increase in score

 Recompute cluster centers

 Reassign points

until (no changes)
Try the applet at:

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html
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Comparisons

Hierarchical clustering
Number of clusters not preset.

Complete hierarchy of clusters

Not very robust, not very efficient.

K-Means
Need definition of a mean. Categorical data?

More efficient and often finds optimum clustering.
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Functionally related

genes behave similarly

across experiments
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Self-Organizing Maps [Kohonen]

Kind of neural network.

Clusters data and find complex relationships

between clusters.

Helps reduce the dimensionality of the data.

Map of 1 or 2 dimensions produced.

Unsupervised Clustering

Like K-Means, except for visualization
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SOM Architectures

2-D Grid

3-D Grid

Hexagonal Grid
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SOM Algorithm

Select SOM architecture, and initialize weight

vectors and other parameters.

While (stopping condition not satisfied) do for each

input point x

winning node q has weight vector closest to x.

Update weight vector of q and its neighbors.

Reduce neighborhood size and learning rate.
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SOM Algorithm Details

Distance between x and weight vector:

Winning node:

Weight update function (for neighbors):

Learning rate:
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World Bank Statistics

Data: World Bank statistics of countries in 1992.

39 indicators considered e.g., health, nutrition,

educational services, etc.

The complex joint effect of these factors can can

be visualized by organizing the countries using the

self-organizing map.
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World Poverty PCA
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World Poverty SOM



3/3/08 CAP5510 31

World Poverty Map
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Viewing SOM Clusters on PCA axes
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Neural Networks

Input X

Synaptic

Weights W

ƒ(•)

Bias 

Output y
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Learning NN

Adaptive Algorithm

Input X

1

Weights W

+

Desired Response

Error
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Types of NNs

Recurrent NN

Feed-forward NN

Layered

Other issues
Hidden layers possible

Different activation functions possible
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Application: Secondary Structure Prediction


