CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

Giri Narasimhan

ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/BioinfS11.html

Three major public DNA databases

-GenBank

- NCBI (Natl Center for Biotechnology Information) www.ncbi.nlm.nih.gov
-EMBL
- EBI (European Bioinformatics Inst)
-DDBJ
- Japan's center

Entrez Portal @ NCBI

- PubMed
\square DNA and Protein Sequence database
\square Protein structure database
\square Population study data sets
\square Genome assemblies
- BLAST
\square OMIM (Mendelian Inheritance in Man)
\square TaxBrowser

1. Can show sequences are close

rpoA [Pseudomonas aeruginosa] with rpoA [Pseudomonas fluorescence]

\(\left.\begin{array}{llllll}Query \& 1 \& MQISVNEFLTPRHIDVQVVSPTRAKITLEPLERGFGHTLGNALRRILLSSMPGCAVVEAE \& 60

Sbjct \& 1 \& MQ SVNEFLTPRHIDVQVVS TRAKITLEPLERGFGHTLGNALRRILLSSMPGCAVVEAE\end{array}\right]\)| | |
| :--- | :--- |
| Query | 61 |

2. Can show sequences have similar parts

Sequence 1 gi 332624 Simian sarcoma virus v-sis transforming protein p28 gene, complete cds; and 3^{\prime} LTR long terminal repeat, complete sequence. Length 2984 (1 .. 2984)
Sequence 2 gi 4505680 Homo sapiens platelet-derived growth factor beta polypeptide (simian sarcoma viral (v-sis) oncogene homolog) (PDGFB), transcript variant 1, mRNA Length 3373 (1 .. 3373)

3. Can identify similar sequences from DB

V-sis Oncogene - Homologies

Sequences producing significant alignments:	Score (bits)	$\begin{gathered} \text { E } \\ \text { Value } \end{gathered}$			
gi\|332623	gb	J02396.1	SEG_SSVPCS2 Simian sarcoma virus v-si	,	0.0
gi\|61774	emb	V01201.1	RESSV1 Simian sarcoma virus proviral	4504	0.0
gi\|332622	gb	J02395.1	SEG_SSVPCS1 Simian sarcoma virus LTR	1283	0.0
gi\|885929	gb	U20589.1	GLU20589 Gibbon leukemia virus envelo	1140	0.0
gi\| $4505680 \mid$ ref\|NM_002608.1	Homo sapiens platelet-derived	954	0.0		
gi\|20987438	gb	BC029822.1	Homo sapiens, platelet-derived	954	0.0
gi\|338210	gb	M12783.1	HUMSISPDG Human c-sis/platelet-deriv	954	0.0

4. Can pinpoint mutations

870 GTGGCTGСттСттTGGTTGTGCTGTGGCTCCTTGGAAA

$$
X
$$

870 GTGGCTGCTTCTTTGGTTGTGCTGTAGCTCCTTGGAAA

5. Can be basis for discoveries

\square Early 1970s: Simian sarcoma virus causes cancer in some species of monkeys.
1970s: infection by certain viruses cause some cells in culture (in vitro) to grow without bounds.

- Hypothesis: Certain genes (oncogenes) in viruses encode cellular growth factors, which are proteins needed to stimulate growth of a cell colony. Thus uncontrolled quantities of growth factors produced by the infected cells cause cancer-like behavior.
- 1983:
- The oncogene from SSV called v-sis was isolated and sequenced.
- The partial amino-acid sequence for platelet-derived growth factor (PDGF) was sequenced and published. It stimulates the proliferation of normal cells.
- R.F. Doolittle was maintaining one of the earliest home-grown databases of published amino-acid sequences.
- Sequence Alignment of v-sis and PDGF showed something surprising.

PDGF and v-sis

O One region of 31 amino acids had 26 exact matches
Another region of 39 residues had 35 exact matches.

- Conclusion:
- The previously harmless virus incorporates the normal growth-related gene (proto-oncogene) of its host into its genome.
- The gene gets mutated in the virus, or moves closer to a strong enhancer, or moves away from a repressor.
- This causes an uncontrolled amount of the product (the growth factor, for example) when the virus infects a cell.
\square Several other oncogenes known to be similar to growth-regulating proteins in normal cells.

Sequence Alignment

>gi|4505680|ref|NM_002608.1| Homo sapiens platelet-derived growth factor beta polypeptide (simian sarcoma viral (v-sis) oncogene homolog) (PDGFB), transcript variant 1, mRNA Length $=3373$ Score $=954$ bits (481), Expect $=0.0$ Identities $=634 / 681$ (93\%), Gaps $=3 / 681$ (0%) Strand = Plus / Plus
Query: 1015 agggggaccccattcctgaggagctctataagatgctgagtggccactcgattcgctcct 1074

Sbjct: 1084 agggggaccccattcccgaggagctttatgagatgctgagtgaccactcgatccgctcct 1143 $\begin{array}{llllllllllllllllllll} & 21 & E & G & D & P & I & \text { P } & \text { E } & \text { L } & \text { Y } & \text { E } & \text { M } & \text { L } & \text { S } & \text { D } & H & S & I & R\end{array}$
Query: 1075 tcgatgacctccagcgcctgctgcagggagactccggaaaagaagatggggctgagctgg 1134

Sbjct: 1144 ttgatgatctccaacgcctgctgcacggagaccccggagaggaagatggggccgagttgg 1203 $\begin{array}{llllllllllllllllllll}\mathbf{C l} & \mathbf{1} & \mathrm{D} & \mathrm{L} & \mathrm{N} & \mathrm{M} & \mathrm{T} & \mathrm{R} & \mathrm{S} & \mathrm{H} & \mathrm{S} & \mathrm{G} & \mathrm{G} & \mathrm{E} & \mathrm{L} & \mathrm{E} & \mathrm{S} & \mathrm{L} & \mathrm{A} & \mathrm{R}\end{array} \mathrm{G} \quad \mathrm{R}$

6. Can help describe motifs, domains, and families of sequences

Family alignment for the ITAM domain (Immunoreceptor tyrosine-based activation motif)
\square CD3D MOUSE/1-2 Q907 $\overline{6} 8 / 1-21$

EQL QP RDR EDTQ-SR G GN CD3G_SHEEP/1-2 P79951/1-21 FCEG CAVPO/1-2 CD3Z-HUMAN/3-0 C79A-BOVIN/1-2 C79B_MOUSE/1-2 CD3H-MOUSE/1-2 DQL QP GER NDGQ-SQ A TA DQL QP KER EDDQ-SH R KK NDL QP GQR SEDT-SH N SR
DGI TG STR NQET-ET K HE
DGL QG STA TKDT-DA H MQ
ENL EG NLD DCSM- EDIS RG
DHT EG NID QTAT-EDIV TL
NQL NE NLG RREE-DV E KK
CD3Z_SHEEP/1-2 NPV NE NVG RREE-AV D RR
CD3E_HUMAN/1-2 NPD EPIRKG QRDL-SG N QR
CD3H_MOUSE/2-0 EGV NA QKD KMAEA SEIG TK
Consēnsus/60\% -.lYpsLspc pcsp.YspLs pp

Simple
Modular Architecture Research Tool

Implications of Sequence Alignment

\square Mutation in DNA is a natural evolutionary process. Thus sequence similarity may indicate common ancestry.
\square In biomolecular sequences (DNA, RNA, protein), high sequence similarity implies significant structural and/or functional similarity.

Similarity vs. Homology

\square Homologous sequences share common ancestry.
\square Similar sequences are "near" to each other by some appropriately defined measurable criteria.

Types of Sequence Alignments - 1

QGlobal Alignment: similarity over entire length

LLocal Alignment: no overall similarity, but some segment(s) is/are similar

Types of Sequence Alignments - 2

\square Semi-global Alignment: end segments may not be similar

-Multiple Alignment: similarity between sets of sequences

Sequence Alignment

GGlobal:

- Needleman-Wunsch-Sellers (1970).
-Local:
- Smith-Waterman (1981)
- Useful when commonality is small and global alignment is meaningless. Often unaligned portions "mask" short stretches of aligned portions. Example: comparing long stretches of anonymous DNA; aligning proteins that share only some motifs or domains.
\square Dynamic Programming (DP) based.

Why gaps?

DExample: Finding the gene site for a given (eukaryotic) cDNA requires "gaps".
\square What is CDNA? cDNA = Copy DNA

How to score mismatches?

BLAST \& FASTA

DFASTA
[Lipman, Pearson '85, '88]
\square Basic Local Alignment Search Tool
[Altschul, Gish, Miller, Myers, Lipman '90]

BLAST Overview

\square Program(s) to search all sequence databases
\square Tremendous Speed/Less Sensitive
\square Statistical Significance reported
\square WWWBLAST, QBLAST (send now, retrieve results later), Standalone BLAST, BLASTcl3 (Client version, TCP/IP connection to NCBI server), BLAST URLAPI (to access QBLAST, no local client)

BLAST

Extension using neighborhood words greater than neighborhood score threshold ($T=| |$)

Query: 1 TLSHAWRLSNETDKRPFIETAERLRDQHKKDYPEYKYQPRRRKNGKPGSSSEADAHSE 58
TL WRL $\mathrm{N}+\mathrm{KRPF}+E$ AERLR+QHKKD+P+YKYQPRRRK+K G S
D \qquad
Sbjct: 140 TLESGWRLENPGEKRPFVEGAERLREQHKKDHPDYKYQPRRRKSVKNGQSEPEDGSEQ 197
FIGURE II.7 The initiation of a BLAST search. The search begins with query words of a given length (here, three amino acids) being compared against a scoring matrix to determine additional three-letter words "in the neighborhood" of the original query word. Any occurrences of these neighborhood words in sequences within the target database then are investigated. See text for details.

BLAST Strategy \& Improvements

LLipman et al.: speeded up finding "runs" of "hot spots".
-Eugene Myers '94: "Sublinear algorithm for approximate keyword matching".
-Karlin, Altschul, Dembo '90, '91:
"Statistical Significance of Matches"

Why Gaps?

DExample: Aligning HIV sequences.

BLAST Variants

- Nucleotide BLAST
- Standard blastn
- MEGABLAST (Compare large sets, Near-exact searches)
- Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering)
- Protein BLAST
- Standard blastp
- PSI-BLAST (Position Specific Iterated BLAST)
- PHI-BLAST (Pattern Hit Initiated BLAST; reg expr. Or Motif search)
- Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering, PAM-30)
\square Translating BLAST
- Blastx: Search nucleotide sequence in protein database (6 reading frames)
- Tblastn: Search protein sequence in nucleotide dB
- Tblastx: Search nucleotide seq (6 frames) in nucleotide DB (6 frames)

BLAST Cont'd

- RPS BLAST
- Compare protein sequence against Conserved Domain DB; Helps in predicting rough structure and function
\square Pairwise BLAST
- blastp (2 Proteins), blastn (2 nucleotides), tblastn (protein-nucleotide w/ 6 frames), blastx (nucleotide-protein), tblastx (nucleotide w/6 framesnucleotide w/ 6 frames)
\square Specialized BLAST
- Human \& Other finished/unfinished genomes
- P. falciparum: Search ESTs, STSs, GSSs, HTGs
- VecScreen: screen for contamination while sequencing
- IgBLAST: Immunoglobin sequence database

BLAST Credits

\square Stephen Altschul
\square Jonathan Epstein
\square David Lipman
Tom Madden
\square Scott McGinnis

- Jim Ostell
- Alex Schaffer
\square Sergei Shavirin
\square Heidi Sofia
\square Jinghui Zhang

Databases used by BLAST

\square Protein

-nr (everything), swissprot, pdb, alu, individual genomes
\square Nucleotide
-nr, dbest, dbsts, htgs (unfinished genomic sequences), gss, pdb, vector, mito, alu, epd
\square Misc

BLAST Parameters and Output

Type of sequence, nucleotide/protein

- Word size, w

Gap penalties, p_{1} and p_{2}

- Neighborhood Threshold Score, T
\square Score Threshold, S
- E-value Cutoff, E

Number of hits to display, H

- Database to search, D
- Scoring Matrix, M
\square Score s and E-value e
- E-value e is the expected number of sequences that would have an alignment score greater than the current score s.

Scoring Matrix to Use

- PAM 40
- PAM 160
- PAM 250
- BLOSUM90
- BLOSUM8O
- BLOSUM62
- BLOSUM30

Short alignments with high similarity (70-90\%)
Members of a protein family (50-60\%)
Longer alignments (divergent sequences) (~30\%)
Short alignments with high similarity (70-90\%)
Members of a protein family (50-60\%)
Finding all potential hits (30-40\%)
Longer alignments (divergent sequences) ($<30 \%$)

Rules of Thumb

\square Most sequences with significant similarity over their entire lengths are homologous.
\square Matches that are > 50\% identical in a 20-40 aa region occur frequently by chance.
\square Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
$\square A$ homologous to $B \& B$ to $C \Rightarrow A$ homologous to C.
\square Low complexity regions, transmembrane regions and coiled-coil regions frequently display significant similarity without homology.
\square Greater evolutionary distance implies that length of a local alignment required to achieve a statistically significant score also increases.

Rules of Thumb

- Results of searches using different scoring systems may be compared directly using normalized scores.
If If is the (raw) score for a local alignment, the normalized score S' (in bits) is given by

$$
S^{\prime}=\frac{\lambda-\ln (\mathrm{K})}{\ln (2)}
$$

The parameters depend on the scoring system.

- Statistically significant normalized score,

$$
S^{\prime}>\log \left(\frac{N}{E}\right)
$$

where E -value $=\mathrm{E}$, and $\mathrm{N}=$ size of search space.

Types of Sequence Alignments

Global Alignment： An example

```
V: G A A T T C A G T T A
W: G G A T C G A
```

		G	A	A	T	T	C	A	G	T	T	A
	0	0	0	0	0	0	0	0	0	0	0	0
G	0											
G	0											
A	0											
T	0											
C	0											
G	0											
A	0											

Given

$\delta[I, J]=$ Score of Matching the $I^{\text {th }}$ character of sequence V \＆ the $\mathrm{J}^{\text {th }}$ character of sequence W

Compute

S［I，J］＝Score of Matching

$$
\begin{aligned}
& \text { Recurrence Relation } \\
& \text { S[I, J] = MAXIMUM \{ } \\
& \quad \text { S[I-1, J-1] }+\delta(V[I], W[J]), \\
& S[I-1, J]+\delta(V[I],-), \\
& S[I, J-1]+\delta(-, W[J])\}
\end{aligned}
$$

First I characters of sequence V \＆ First J characters of sequence W

Global Alignment: An example

S[I, J] = MAXIMUM \{

S[I-1, J-1] + $\delta(\mathrm{V}[\mathrm{I}], \mathrm{W}[\mathrm{J}])$,
$S[I-1, J]+\delta(V[I],-)$,
$S[I, J-1]+\delta(-, W[J])\}$
$V: G A A T T C A G T T A$
W: G G A T C G A

1/20/11

CAP5510/CGS5166

G		A	A	T	T			G	T	T	A
0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	2	2	2	2
0	1	2	2	2	2	2	2	2	2	2	3
0	1	2	2	3	3	3	3	3	3	3	3
0	1	2	2	3	3	3	4	4	4	4	4
0	1	2	2	3	3	3	4	4	5	5	5
0	1	2	3	3	3	3	4	5	5	5	6

Traceback

1/20/11

Alternative Traceback

$$
\begin{array}{lccccccccccc}
V: & G & -A & A & T & T & C & A & G & T & T & A \\
& \mid & & \mid & & \mid & \mid & & \mid & & \mid \\
W: & G & G & - & A & - & T & C & - & G & - & - \\
A
\end{array}
$$

Improved Traceback

Improved Traceback

			A	A	T	T	c	A	G	T	T	A
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	$\times 1$	$\leftarrow 1$	$\times 1$	$\leftarrow 1$	$\leftarrow 1$	$\leftarrow 1$					
G	0	$\times 1$	$\uparrow 1$	$\times 2$	$\leftarrow 2$	$\leftarrow 2$	$\leftarrow 2$					
A	0	$\uparrow 1$	$\uparrow 1$	$\times 2$	$\leftarrow 2$	$\leftarrow 2$	$\leftarrow 2$	$\times 2$	$\uparrow 2$	$\uparrow 2$	$\uparrow 2$	$\times 3$
T	0	$\uparrow 1$	$\leftarrow 2$	$\uparrow 2$	$\times 3$	$\times 3$	$\leftarrow 3$	$\leftarrow 3$	$\leftarrow 3$	$\times 3$	$\times 3$	$\uparrow 3$
c	0	$\uparrow 1$	$\uparrow 2$	१2	$\uparrow 3$	$\uparrow 3$	$\times 4$	$\leftarrow 4$				
G	0	$\uparrow 1$	\uparrow १	$\uparrow 2$	$\uparrow 3$	$\uparrow 3$	$\uparrow 4$	$\uparrow 4$	$\times 5$	$\leftarrow 5$	$\leftarrow 5$	$\leftarrow 5$
A	0	$\uparrow 1$	१2	$\times 3$	$\uparrow 3$	$\uparrow 3$	$\uparrow 4$	$\times 5$	$\uparrow 5$	$\uparrow 5$	$\uparrow 5$	$\times 6$
1/20/11		CAP5510/CGS5166									38	

Improved Traceback

Subproblems

\square Optimally align V[1.I] and W[1..J] for every possible values of I and J.

- Having optimally aligned
- V[1.I-1] and W[1..J-1]
- V[1..I] and W[1..J-1]
- V[1..I-1] and W[1, J]
it is possible to optimally align V[1..I] and W[1..J]

```
\square O(mn),
    where m = length of V,
    and }n=\mathrm{ length of W.
```


Generalizations of Similarity Function

\square Mismatch Penalty $=\alpha$
\square Spaces (Insertions/Deletions, InDels) $=\beta$
-Affine Gap Penalties:
(Gap open, Gap extension) $=(\gamma, \delta)$
\square Weighted Mismatch $=\Phi(a, b)$
\square Weighted Matches $=\Omega(a)$

Alternative Scoring Schemes

		G	A	A	T	T	c	A	G	T	T	A
	0	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12
G	-2	$\times 1$	$\leftarrow-1$	$\leftarrow-2$	$\leftarrow-3$	$\leftarrow-4$	$\leftarrow-5$	$\leftarrow-6$	$\leftarrow-7$	$\leftarrow-8$	$\leftarrow-9$	$\leftarrow-10$
G	-3	$\uparrow-1$	$\times-1$	$\leftarrow-3$	$\leftarrow-4$	$\leftarrow-5$	$\leftarrow-6$	$\leftarrow-7$	$\times-5$	$\leftarrow-7$	$\leftarrow-8$	$\leftarrow-9$
A	-4	\uparrow-2	$\times 0$	$\times 0$	$\leftarrow-2$	$\leftarrow-3$	$\leftarrow-4$	$\leftarrow-5$	$\leftarrow-6$	$\leftarrow-7$	$\leftarrow-8$	$\times-7$
T	-5	\uparrow-3	\uparrow-2	$\uparrow-2$	$\times 1$	$\leftarrow-1$	$\leftarrow-2$	$\leftarrow-3$	$\leftarrow-4$	$\leftarrow-5$	$\leftarrow-6$	$\leftarrow-7$
c	-6	$\uparrow-4$	\uparrow-3	\uparrow-3	$\uparrow-1$	$\times-1$	$\times 0$	$\leftarrow-2$	$\leftarrow-3$	$\leftarrow-4$	$\leftarrow-5$	$\leftarrow-6$
G	-7	\uparrow-5	$\uparrow-4$	\uparrow-4	$\uparrow-2$	\uparrow-3	$\uparrow-2$	$\times-2$	$\times-1$	$\leftarrow-3$	$\leftarrow-4$	$\leftarrow-5$
A	-8	\uparrow-6	$\uparrow-5$	\uparrow-5	\uparrow-3	$\uparrow-4$	\uparrow-3	$\times-1$	\uparrow-3	$\times-3$	$\times-5$	$\times-3$

Match +1
Mismatch - 2
Gap (-2, -1)
$\begin{array}{cccccccccccc}V: & G & A & A & T & T & C & A & G & T & T & A \\ & \mid & & \mid & \mid & & \mid & & \mid & & & \mid \\ W: & G & G & A & T & - & C & - & G & - & - & A\end{array}$
CAP5510/CGS5166

Local Sequence Alignment

Example: comparing long stretches of anonymous DNA; aligning proteins that share only some motifs or domains.

- Smith-Waterman Algorithm

Recurrence Relations (Global vs Local Alignments)

- S[I, J] = MAXIMUM \{ $S[I-1, J-1]+\delta(V[I], W[J])$, S[I-1, J] $+\delta(V[I],-)$,
S[I, J-1] $+\delta(-, W[J])\}$
Global
Alignment
- $S[I, J]=\operatorname{MAXIMUM}\{0$, S[I-1, J-1] + $\delta(V[I], W[J])$,
$S[I-1, J]+\delta(V[I],-)$,
S[I, J-1] $+\delta(-, W[J])\}$
Local
Alignment

Local Alignment: Example

Properties of Smith-Waterman Algorithm

- How to find all regions of "high similarity"?
- Find all entries above a threshold score and traceback.
\square What if: Matches $=1$ \& Mismatches/spaces $=0$?
- Longest Common Subsequence Problem

What if: Matches = 1 \& Mismatches/spaces $=-\infty$?

- Longest Common Substring Problem

What if the average entry is positive?

- Global Alignment

How to score mismatches?

BLOSUM n Substitution Matrices

\square For each amino acid pair a, b

- For each BLOCK
\Rightarrow Align all proteins in the BLOCK
\Rightarrow Eliminate proteins that are more than $n \%$ identical
$>$ Count $F(a), F(b), F(a, b)$
$>$ Compute Log-odds Ratio

$$
\log \left(\frac{F(a, b)}{F(a) F(b)}\right)
$$

Multiple Alignments

\square Global

- ClustalW, ClustalX
- MSA
- T-Coffee
- Local
- BLOCKS
- eMOTIF
- GIBBS
- HMMER
- MACAW
- MEME
- Other
- Profile Analysis from msa (UCSD)
- SAM HMM (from msa)

Multiple Alignments: CLUSTALW

* identical
: conserved substitutions
. semi-conserved substitutions

> gi | 2213819
> gi | 12656123
> gi | 7512442
> gi | 1344282

Red:
Blue:
Magenta:
Green:
Gray:

CDN-ELKSEAIIEHLCASEFALR-------------MKIKEVKKENGDKK 223
----ELKSEAIIEHLCASEFALR-------------MKIKEVKKENGD- 31 CKNKNDDDNDIMETLCKNDFALK-------------IKVKEITYINRDTK 211 QDECKFDYVEVYETSSSGAFSLLGRFCGAEPPPHLVSSHHELAVLFRTDH 400

AVFPMLW (Small \& hydrophobic)
DE (Acidic)
RHK (Basic)
STYHCNGQ (Hydroxyl, Amine, Basic) Others

