## CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

## Giri Narasimhan

ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/BioinfS11.html

## Global Alignment： An example

```
V: G A A T T C A G T T A
W: G G A T C G A
```

|  |  | G | A | A | T | T | C | A | G | T | T | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| G | 0 |  |  |  |  |  |  |  |  |  |  |  |
| G | 0 |  |  |  |  |  |  |  |  |  |  |  |
| A | 0 |  |  |  |  |  |  |  |  |  |  |  |
| T | 0 |  |  |  |  |  |  |  |  |  |  |  |
| C | 0 |  |  |  |  |  |  |  |  |  |  |  |
| G | 0 |  |  |  |  |  |  |  |  |  |  |  |
| A | 0 |  |  |  |  |  |  |  |  |  |  |  |

## Given

Match／Mismatch score
$\delta[I, J]=$ Score of Matching
the $I^{\text {th }}$ character of sequence $V$ \＆ the $\mathrm{J}^{\text {th }}$ character of sequence W

## Compute

S［I，J］＝Score of Matching
First I characters of sequence V \＆ First J characters of sequence W

$$
\begin{aligned}
& \text { Recurrence Relation } \\
& \text { S[I, J] = MAXIMUM \{ } \\
& \quad \mathrm{S}[I-1, J-1]+\delta(V[I], W[J]), \\
& \quad \text { [I-1, J] }+\delta(V[I],-), \\
& \quad S[I, J-1]+\delta(-, W[J])\}
\end{aligned}
$$

Gap Penalty

## What happens with last character(s)?

1. Last characters MATCH

2. Last character of W aligned with GAP
3. Last characters MISMATCH

4. Last character of V aligned with GAP

## How to fill in the matrix?



Add gap penalty for gap in seq 1

Add gap penalty for gap in seq 2

Global Alignment: An example

## S[I, J] = MAXIMUM \{

$$
\begin{aligned}
& S[I-1, J-1]+\delta(V[I], W[J]), \\
& S[I-1, J]+\delta(V[I],-), \\
& S[I, J-1]+\delta(-, W[J])\}
\end{aligned}
$$

$$
W: G G A T C B A
$$




1/25/11


Match score $=1 ;$ Mismatch $=$ Gap $=-1$

## Traceback




V: G A A T T C A G T T A


1/25/11

## Alternative Traceback




## Improved Traceback



## Improved Traceback

|  |  |  | A | A | T | T | c | A | G | T | T | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| G | 0 | $\times 1$ | $\leftarrow 1$ | $\times 1$ | $\leftarrow 1$ | $\leftarrow 1$ | $\leftarrow 1$ |
| G | 0 | $\times 1$ | $\uparrow 1$ | $\times 2$ | $\leftarrow 2$ | $\leftarrow 2$ | $\leftarrow 2$ |
| A | 0 | $\uparrow 1$ | $\uparrow 1$ | $\times 2$ | $\leftarrow 2$ | $\leftarrow 2$ | $\leftarrow 2$ | $\times 2$ | $\uparrow$ १ | $\uparrow 2$ | $\uparrow 2$ | $\times 3$ |
| T | 0 | $\uparrow 1$ | $\leftarrow 2$ | $\uparrow 2$ | $\times 3$ | $\times 3$ | $\leftarrow 3$ | $\leftarrow 3$ | $\leftarrow 3$ | $\times 3$ | $\times 3$ | $\uparrow 3$ |
| c | 0 | $\uparrow 1$ | $\uparrow 2$ | $\uparrow 2$ | $\uparrow 3$ | $\uparrow 3$ | $\times 4$ | $\leftarrow 4$ |
| G | 0 | $\uparrow 1$ | १2 | १2 | $\uparrow 3$ | $\uparrow 3$ | $\uparrow 4$ | $\uparrow 4$ | $\times 5$ | $\leftarrow 5$ | $\leftarrow 5$ | $\leftarrow 5$ |
| A | 0 | $\uparrow 1$ | $\uparrow 2$ | $\times 3$ | $\uparrow 3$ | $\uparrow 3$ | $\uparrow 4$ | $\times 5$ | $\uparrow 5$ | $\uparrow 5$ | $\uparrow 5$ | $\times 6$ |
| 1/25/11 |  |  |  |  | CAP5510/CGS5166 |  |  |  |  |  |  | 9 |

## Improved Traceback

|  | $G$ |  | A | A | T | T | C | A | $G$ | T | T | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $G$ | 0 | $\times 1$ | $\leftarrow 1$ | $\times 1$ | $\leftarrow 1$ | $\leftarrow 1$ | $\leftarrow 1$ |
| $G$ | 0 | $\times 1$ | $\uparrow 1$ | $\times 2$ | $\leftarrow 2$ | $\leftarrow 2$ | $\leftarrow 2$ |
| A | 0 | $\uparrow 1$ | $\uparrow 1$ | $\times 2$ | $\leftarrow 2$ | $\leftarrow 2$ | $\leftarrow 2$ | $\times 2$ | $\uparrow 2$ | $\uparrow 2$ | $\uparrow 2$ | $\times 3$ |
| T | 0 | $\uparrow 1$ | $\leftarrow 2$ | $\uparrow 2$ | $\times 3$ | $\times 3$ | $\leftarrow 3$ | $\leftarrow 3$ | $\leftarrow 3$ | $\times 3$ | $\times 3$ | $\uparrow 3$ |
| c | 0 | $\uparrow 1$ | $\uparrow 2$ | $\uparrow 2$ | $\uparrow 3$ | $\uparrow 3$ | $\times 4$ | $\leftarrow 4$ |
| $G$ | 0 | $\uparrow 1$ | $\uparrow 2$ | $\uparrow 2$ | $\uparrow 3$ | $\uparrow 3$ | $\uparrow 4$ | $\uparrow 4$ | $\times 5$ | $\leftarrow 5$ | $\leftarrow 5$ | $\leftarrow 5$ |
| A | 0 | $\uparrow 1$ | $\uparrow 2$ | $\times 3$ | $\uparrow 3$ | $\uparrow 3$ | $\uparrow 4$ | $\times 5$ | $\uparrow 5$ | $\uparrow 5$ | $\uparrow 5$ | $\times 6$ |
|  |  |  |  |  |  |  |  |  |  |  |  | 10 |
|  |  |  |  | - | A |  | C | G | - |  |  |  |

## Subproblems

DOptimally align V[1.I] and W[1..J] for every possible values of $I$ and $J$.
-Having optimally aligned

- V[1..I-1] and W[1..J-1]
- V[1..I] and W[1..J-1]
- V[1..I-1] and W[1, J ]
it is possible to optimally align V[1..I] and W[1..J ]
$\square O(m n)$,
where $m=$ length of $V$, and $n=$ length of $W$.


## Generalizations of Similarity Function

$\square$ Mismatch Penalty $=\alpha$
$\square$ Spaces (Insertions/Deletions, InDels) $=\beta$
-Affine Gap Penalties:
(Gap open, Gap extension) $=(\gamma, \delta)$
$\square$ Weighted Mismatch $=\Phi(a, b)$
$\square$ Weighted Matches $=\Omega(a)$

## Alternative Scoring Schemes

|  | G |  | A | A | T | T | C | A | $G$ | T | T | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10 | -11 | -12 |
| G | -2 | $\times 1$ | $\leftarrow-1$ | $\leftarrow-2$ | $\leftarrow-3$ | $\leftarrow-4$ | $\leftarrow-5$ | $\leftarrow-6$ | $\leftarrow-7$ | $\leftarrow-8$ | $\leftarrow-9$ | $\leftarrow-10$ |
| G | -3 | $\uparrow-1$ | $\times-1$ | $\leftarrow-3$ | $\leftarrow-4$ | $\leftarrow-5$ | $\leftarrow-6$ | $\leftarrow-7$ | $\times-5$ | $\leftarrow-7$ | $\leftarrow-8$ | $\leftarrow-9$ |
| A | -4 | $\uparrow-2$ | $\times 0$ | $\times 0$ | $\leftarrow-2$ | $\leftarrow-3$ | $\leftarrow-4$ | $\leftarrow-5$ | $\leftarrow-6$ | $\leftarrow-7$ | $\leftarrow-8$ | $\times-7$ |
| T | -5 | $\uparrow-3$ | $\uparrow-2$ | $\uparrow-2$ | $\times 1$ | $\leftarrow-1$ | $\leftarrow-2$ | $\leftarrow-3$ | $\leftarrow-4$ | $\leftarrow-5$ | $\leftarrow-6$ | $\leftarrow-7$ |
| C | -6 | $\uparrow-4$ | $\uparrow-3$ | $\uparrow$-3 | $\uparrow-1$ | x-1 | $\times 0$ | $\leftarrow-2$ | $\leftarrow-3$ | $\leftarrow-4$ | $\leftarrow-5$ | $\leftarrow-6$ |
| $G$ | -7 | $\uparrow-5$ | $\uparrow-4$ | $\uparrow$-4 | $\uparrow-2$ | $\uparrow$-3 | $\uparrow-2$ | $x-2$ | $\times-1$ | $\leftarrow-3$ | $\leftarrow-4$ | $\leftarrow-5$ |
| A | -8 | $\uparrow-6$ | $\uparrow-5$ | $\uparrow-5$ | $\uparrow-3$ | $\uparrow-4$ | $\uparrow-3$ | $\times-1$ | $\uparrow-3$ | $\times-3$ | $\times-5$ | $\times-3$ |

Match +1
Mismatch - 2
$\operatorname{Gap}(-2,-1)$
$\mathrm{V}: \mathrm{G} A \mathrm{~A} T \mathrm{~T}$ C A GTTA
W: GGAT-C-G--A

## Local Sequence Alignment

DExample: comparing long stretches of anonymous DNA; aligning proteins that share only some motifs or domains.
USmith-Waterman Algorithm

## Recurrence Relations (Global vs Local Alignments)

$\square S[I, J]=$ MAXIMUM \{
S[I-1, J-1] + $\delta(V[I], W[J])$,
$S[I-1, J]+\delta(V[I],-)$,
S[I, J-1] + $\delta(-, W[J])\}$

# Global <br> Alignment 

$\square S[I, J]=$ MAXIMUM \{ 0 , $S[I-1, J-1]+\delta(V[I], W[J])$,
S[I-1, J] + $\delta(\mathrm{V}[\mathrm{I}],-)$,
$S[I, J-1]+\delta(-, W[J])\}$

## Local <br> Alignment

## Local Alignment: Example

$\begin{array}{lllllllllll}G & A & A & T & T & C & A & G & T & T & A\end{array}$

|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $G$ | 0 | $\times 1$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| G | 0 | $\times 1$ | $\leftarrow 0$ | 0 | 0 | 0 | 0 | 0 | $\times 1$ | 0 | 0 | 0 |
| A | 0 | 0 | $\times 2$ | $\times 1$ | 0 | 0 | 0 | $\times 1$ | 0 | 0 | 0 | $\times 1$ |
| T | 0 | 0 | $\uparrow 0$ | $\times 1$ | $\times 2$ | $\leftarrow 1$ | 0 | 0 | 0 | $\times 1$ | $\times 1$ | 0 |
| $C$ | 0 | 0 | 0 | 0 | $\uparrow 0$ | $\times 0$ | $\times 2$ | 0 | 0 | 0 | 0 | 0 |
| G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\times 1$ | 0 | 0 | 0 |
| A | 0 | 0 | $\times 1$ | $\times 1$ | 0 | 0 | 0 | $\times 1$ | 0 | 0 | 0 | $\times 1$ |

Match +1
Mismatch - 1
$\operatorname{Gap}(-1,-1)$
1/25/11

| $V:$ | - | $G$ | $A$ | $A$ | $T$ | $T$ | $C$ | $A$ | $G$ | $T$ | $T$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$A$

CAP5510/CGS5166

## Properties of Smith-Waterman Algorithm

-How to find all regions of "high similarity"?

- Find all entries above a threshold score and traceback.
$\square$ What if: Matches = 1 \& Mismatches/spaces = 0?
- Longest Common Subsequence Problem
$\square$ What if: Matches $=1$ \& Mismatches/spaces $=-\propto$ ?
- Longest Common Substring Problem
$\square$ What if the average entry is positive?
- Global Alignment


## Calculation of an alignment score


$\mathrm{S}=\sum$ (identities, mismatches) $-\sum$ (gap penalties) score $=\operatorname{Max}(S)$

Source: http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Alignment_Scores2.html

## How to score mismatches?



## How to score mismatches?



## BLOSUM n Substitution Matrices

$\square$ For each amino acid pair $a, b$

- For each BLOCK
$\Rightarrow$ Align all proteins in the BLOCK
$\Rightarrow$ Eliminate proteins that are more than $n \%$ identical
$>$ Count $F(a), F(b), F(a, b)$
$>$ Compute Log-odds Ratio

$$
\log \left(\frac{F(a, b)}{F(a) F(b)}\right)
$$

## Scoring Matrix to Use

- PAM 40
- PAM 160
- PAM 250
- BLOSUM90
- BLOSUM8O
- BLOSUM62
- BLOSUM30

Short alignments with high similarity (70-90\%)
Members of a protein family (50-60\%)
Longer alignments (divergent sequences) (~30\%)
Short alignments with high similarity (70-90\%)
Members of a protein family (50-60\%)
Finding all potential hits (30-40\%)
Longer alignments (divergent sequences) ( $<30 \%$ )

| BLOSUM 80 <br> PAM 1 <br> Less divergent | BLOSUM 62 <br> PAM 120 | BLOSUM 45 <br> PAM 250 |
| :--- | :---: | :---: |

Slide: Courtesy J. Pevsner

## BLAST: Steps

$\square$ Choose your sequence
-Choose your tool
$\square$ Choose your database
$\square$ Select parameters, if needed
Interpret your results

## BLAST Variants

- Nucleotide BLAST
- Standard blastn
- MEGABLAST (Compare large sets, Near-exact searches)
- Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering)
- Protein BLAST
- Standard blastp
- PSI-BLAST (Position Specific Iterated BLAST)
- PHI-BLAST (Pattern Hit Initiated BLAST; reg expr. Or Motif search)
- Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering, PAM-30)
$\square$ Translating BLAST
- Blastx: Search nucleotide sequence in protein database (6 reading frames)
- Tblastn: Search protein sequence in nucleotide dB
- Tblastx: Search nucleotide seq (6 frames) in nucleotide DB (6 frames)


## BLAST Cont'd

- RPS BLAST
- Compare protein sequence against Conserved Domain DB; Helps in predicting rough structure and function
$\square$ Pairwise BLAST
- blastp (2 Proteins), blastn (2 nucleotides), tblastn (protein-nucleotide w/ 6 frames), blastx (nucleotide-protein), tblastx (nucleotide w/6 framesnucleotide w/ 6 frames)
$\square$ Specialized BLAST
- Human \& Other finished/unfinished genomes
- P. falciparum: Search ESTs, STSs, GSSs, HTGs
- VecScreen: screen for contamination while sequencing
- IgBLAST: Immunoglobin sequence database


## Databases used by BLAST

$\square$ Protein
-nr (everything), swissprot, pdb, alu, individual genomes
$\square$ Nucleotide
-nr, dbest, dbsts, htgs (unfinished genomic sequences), gss, pdb, vector, mito, alu, epd
$\square$ Misc

## BLAST Parameters and Output

$\square$ Type of sequence, nucleotide/protein
$\square$ Word size, w
$\square$ Gap penalties, $p_{1}$ and $p_{2}$
$\square$ Neighborhood Threshold Score, T
$\square$ Score Threshold, S
$\square$ E-value Cutoff, E
Number of hits to display, H
$\square$ Database to search, D
$\square$ Scoring Matrix, M
$\square$ Score $s$ and E-value e

- E-value $e$ is the expected number of sequences that would have an alignment score greater than the current score s.


## BLAST



Extension using neighborhood words greater than neighborhood score threshold ( $T=\mid 1$ )

Query: 1 TLSHAWRLSNETDKRPFIETAERLRDQHKKDYPEYKYQPRRRKNGKPGSSSEADAHSE 58
TL WRL $\mathrm{N}+\mathrm{KRPF}+E$ AERLR+QHKKD+P+YKYQPRRRK+K G S
D $\qquad$
Sbjct: 140 TLESGWRLENPGEKRPFVEGAERLREQHKKDHPDYKYQPRRRKSVKNGQSEPEDGSEQ 197
FIGURE II.7 The initiation of a BLAST search. The search begins with query words of a given length (here, three amino acids) being compared against a scoring matrix to determine additional three-letter words "in the neighborhood" of the original query word. Any occurrences of these neighborhood words in sequences within the target database then are investigated. See text for details.

Popular Resources

- Publad

Publed Central

- Bookshelf

BLAST

- Gent
- Nucleotide
- Protein
- GEO
- Conserved Domain


## Find BLAST from the home page of NCBI and select protein BLAST...

## - NCBI/BLAST Home

BLAST finds regions of similarity between biological sequences. more...
Designing or Testing PCR Primers? Try your search in Primer-BLAST. Go

## BLAST Assembled Genomes

Choose a species genome to search, or list all genomic BLAST databases.

- Human
- Oryza sativa
- Gallus gallus
- Mouse
- Bos taurus
- Pan troglodytes
- Rat
- Danio rerio
- Microbes
- Arabidopsis thaliana
- Drosophila melanogaster
- Apis mellifera


## Basic BLAST

Choose a BLAST program to run.



## Choose align two or more

sequences.

Slide: Courtesy J. Pevsner
Page 52


## Pairwise alignment result of human beta globin and myoglobin



Pairwise alignment result of human beta globin and myoglobin: the score is a sum of match, mismatch, gap creation, and gap extension scores


Slide: Courtesy J. Pevsner

Pairwise alignment result of human beta globin and myoglobin: the score is a sum of match, mismatch, gap creation, and gap extension scores

$\vee$ matching $\vee$ earns +4
T matching Learns -1

Slide: Courtesy J. Pevsner
Page 53

## Rules of Thumb

$\square$ Most sequences with significant similarity over their entire lengths are homologous.
$\square$ Matches that are > 50\% identical in a 20-40 aa region occur frequently by chance.
$\square$ Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
$\square A$ homologous to $B \& B$ to $C \Rightarrow A$ homologous to $C$.
$\square$ Low complexity regions, transmembrane regions and coiled-coil regions frequently display significant similarity without homology.
$\square$ Greater evolutionary distance implies that length of a local alignment required to achieve a statistically significant score also increases.

## Rules of Thumb

- Results of searches using different scoring systems may be compared directly using normalized scores.
If If is the (raw) score for a local alignment, the normalized score S' (in bits) is given by

$$
S^{\prime}=\frac{\lambda-\ln (\mathrm{K})}{\ln (2)}
$$

The parameters depend on the scoring system.

- Statistically significant normalized score,

$$
S^{\prime}>\log \left(\frac{N}{E}\right)
$$

where E -value $=\mathrm{E}$, and $\mathrm{N}=$ size of search space.

## Multiple Alignments

$\square$ Global

- ClustalW, ClustalX
- MSA
- T-Coffee
- Local
- BLOCKS
- eMOTIF
- GIBBS
- HMMER
- MACAW
- MEME
- Other
- Profile Analysis from msa (UCSD)
- SAM HMM (from msa)


## MSA of glyceraldehyde 3-phosphate dehydrogenases: example of high conservation



Slide: Courtesy J. Pevsner Page 57

## Multiple Alignments: CLUSTALW

* identical
: conserved substitutions
. semi-conserved substitutions

> gi | 2213819
> gi | 12656123
> gi | 7512442
> gi | 1344282

Red:
Blue:
Magenta:
Green:
Gray:

CDN-ELKSEAIIEHLCASEFALR-------------MKIKEVKKENGDKK 223
----ELKSEAIIEHLCASEFALR-------------MKIKEVKKENGD- 31 CKNKNDDDNDIMETLCKNDFALK-------------IKVKEITYINRDTK 211 QDECKFDYVEVYETSSSGAFSLLGRFCGAEPPPHLVSSHHELAVLFRTDH 400

AVFPMLW (Small \& hydrophobic)
DE (Acidic)
RHK (Basic)
STYHCNGQ (Hydroxyl, Amine, Basic) Others


40

## Multiple Alignment

A. Estimate the amino acid frequencies in the motif columns of all but one sequence. Also obtain background.

|  | Motif |
| :---: | :---: |
| XXXMXXXXXX | XXXMXXXXXX |
| XXXXXXXMXX | xXXXXXXMXX |
| XXXXXXMXXX | XXXXXMXXX |
| XMXXXXXXXX | $x M x \times x \times x x x$ |
| XXXXXXXXX | XXXXXXXXXX |
| MXXXXXXXX | Mxxxxxxxx |
| $\mathrm{XXXXM} \times \mathrm{MxXX}$ |  |
| XMXXXXXXXX | $x M \times X X X X X X$ |
| XXXXXXXXM | XXXXXXXXM |
| Random start positions chosen | Location of motif in each sequence provides first estimate of motif composition |

## How to Score Multiple Alignments?

$\square$ Sum of Pairs Score (SP)

- Optimal alignment: $O\left(d^{N}\right)$ [Dynamic Prog]
- Approximate Algorithm: Approx Ratio 2
$>$ Locate Center: O(d $\left.\mathrm{d}^{2} \mathrm{~N}^{2}\right)$
> Locate Consensus: $O\left(\mathrm{~d}^{2} \mathrm{~N}^{2}\right)$
Consensus char: char with min distance sum Consensus string: string of consensus char
Center: input string with min distance sum


## Multiple Alignment Methods

$\square$ Phylogenetic Tree Alignment (NP-Complete)

- Given tree, task is to label leaves with strings
- Iterative Method(s)
- Build a MST using the distance function
$\square$ Clustering Methods
- Hierarchical Clustering
- K-Means Clustering


## Multiple Alignment Methods (Cont'd)

GGibbs Sampling Method

- Lawrence, Altschul, Boguski, Liu, Neuwald, Winton, Science, 1993
-Hidden Markov Model
- Krogh, Brown, Mian, Sjolander, Haussler, JMB, 1994


## Multiple Sequence Alignments (MSA)

$\square$ Choice of Scoring Function

- Global vs local
- Gap penalties
- Substitution matrices
- Incorporating other information
- Statistical Significance
- Computational Issues
- Exact/heuristic/approximate algorithms for optimal MSA
- Progressive/Iterative/DP
- Iterative: Stochastic/Non-stochastic/Consistency-based
$\square$ Evaluating MSAs
- Choice of good test sets or benchmarks (BAliBASE)
- How to decide thresholds for good/bad alignments


## Progressive MSA: CLUSTALW

Figure 1. Limits of the progressive strategy.


This example shows how a progressive alignment strategy can be misled. In the initial alignment of sequences 1 and 2 , ClustalW has a choice between aligning CAT with CAT and making an internal gap or making a mismatch between C and $F$ and having a terminal gap. Since terminal gaps are much cheaper than internals, the ClustalW scoring schemes prefers the former. In the next stage, when the extra sequence is added, it turns out that properly aligning the two CATs in the previous stage would have led to a better scori ng sums-of-pairs multiple alignment.
C. Notredame, Pharmacogenomics, 3(1), 2002.

## Software for MSA

## REVIEW


C. Notredame, Pharmacogenomics, 3(1), 2002.

## MSA: Conclusions

- Very important
- Phylogenetic analyses
- Identify members of a family
- Protein structure prediction
$\square$ No perfect methods
$\square$ Popular
- Progressive methods: CLUSTALW
- Recent interesting ones: Prrp, SAGA, DiAlign, T-Coffee
$\square$ Review of Methods [C. Notredame, Pharmacogenomics, 3(1), 2002]
- CLUSTALW works reasonably well, in general
- DiAlign is better for sequences with long insertions \& deletions (indels)
- T-Coffee is best available method

