CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

Giri Narasimhan

ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/BioinfS11.html

BLAST Parameters and Output

\square Type of sequence, nucleotide/protein
\square Word size, w
\square Gap penalties, p_{1} and p_{2}
\square Neighborhood Threshold Score, T
\square Score Threshold, S
\square E-value Cutoff, E
Number of hits to display, H
\square Database to search, D
\square Scoring Matrix, M
\square Score s and E-value e

- E-value e is the expected number of sequences that would have an alignment score greater than the current score s.

BLAST algorithm: Phase 1

Phase 1: get list of word pairs $(w=3)$ above threshold T

Example: for a human RBP query
...FSGTWYA...
GTW is a word in this query sequence

A list of words ($w=3$) is:
FSG SGT GTW TWY WYA
YSG TGT ATW SWY WFA
FTG SVT GSW TWF WYS

Fig. 4.11 page 116

Phase 1: Find list of similar words

DFind list of words of length w (here $w=3$) and distance at least T (here $T=11$)
-GTW 22
-GSW 18
-ATW 16
-NTW 16
-GTY 13
-GNW 10
-GAW 9

Use BLOSUM to score word hits

BLAST: Phases 2 \& 3

-Phase 2: Scan database for exact hits of similar words list and find HotSpots
\square Phase 3:

- Extend good hit in either direction. - Keep track of the score (use a scoring matrix) -Stop when the score drops below some cutoff. KENFDKARFSGTWYAMAKKDPEG 50 RBP (query) MKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin (hit)
extend

BLAST: Threshold vs \# Hits \& Extensions

\rightarrow hits
$-\square$-extensions

Fig. 4.12 page 118

Word Size

DBlastn: w = 7, 11, or 15 .
-w=15 gives fewer matches and is faster than $\mathrm{w}=11$ or $\mathrm{w}=7$.
\square Megablast: w = 28 to 64 .

- Megablast is VERY fast for finding closely related DNA sequences!

Scores: Follow Extreme Value Distribution

E-value versus P-value

E-value	P-value
10	0.9999546
5	0.99326205
2	0.86466472
1	0.63212056
0.1	0.09516258
0.05	0.04877058
0.001	0.00099950
0.001	0.0001

E-values are easier to interpret;
If query is short aa sequence, then use very large E-value; Sometimes even meaningful hits have large \mathbf{E}-values.

Assessing whether proteins are homologous

```
>gi|4505583|ref|NP 002562.1| progestagen-associated endometrial protein (placental protein 14,
    pregnancy-associated endometrial alpha-2-globulin, alpha
    uterine protein); Progestagen-associated endometrial
    protein (placental protein 14) [Homo sapiens]
gi| 190215|gb|Ad.A60147.1| (J04129) placental protein 14 [Homo sapiens]
    Length = 162
    Score = 32.0 bits (71), Expect = 0.49
    Identities = 26/107 (24%), Positives = 48/107 (44%), Gaps = 11/107 (10%)
Query: 26 RVKENFDKARFSGTWYMMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84
    + K++ + + +GTW++MA + L + A V T + +L+ W+
Sbjct: 5 QTKQDLELPKLAGTWHSMAMAT-NNISLMATLKAPLRVHITSLLPTPEDNLEIVLHRWEN 63
Query: 85 -VCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTY 130
            C + T +P KFK+ Y VA ++ ++DTDYD +
Sbjct: 64 NSCVEKKVLGEKTGNPKKFKINY-TVA-------NEATLLDTDYDNF }10
```

RBP4 and PAEP:
Low bit score, E value 0.49, 24\% identity ("twilight zone"). But they are indeed homologous. Try a BLAST search with PAEP as a query, and find many other lipocalins.

Difficulties with BLAST

\square Use human beta globin as a query against human RefSeq proteins, and blastp does not "find" human myoglobin. This is because the two proteins are too distantly related. PSIBLAST at NCBI as well as hidden Markov models easily solve this problem.
\square How can we search using 10,000 base pairs as a query, or even millions of base pairs? Many BLAST-like tools for genomic DNA are available such as PatternHunter, Megablast, BLAT, and BLASTZ.

Related Tools

\square Megablas \dagger

- For long, closely-related sequences
- Uses large w and is very fast
-BLAT
-UCSC tool
- DB broken into words; query is searched DPatternHunter
- Generalized seeds used instead of words
-BLASTZ, Lagan, SSAHA

Rules of Thumb

\square Most sequences with significant similarity over their entire lengths are homologous.
\square Matches that are > 50\% identical in a 20-40 aa region occur frequently by chance.
\square Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
$\square A$ homologous to $B \& B$ to $C \Rightarrow A$ homologous to C.
\square Low complexity regions, transmembrane regions and coiled-coil regions frequently display significant similarity without homology.
\square Greater evolutionary distance implies that length of a local alignment required to achieve a statistically significant score also increases.

Rules of Thumb

\square Results of searches using different scoring systems may be compared directly using normalized scores.
\square If S is the (raw) score for a local alignment, the normalized score S^{\prime} (in bits) is given by

$$
S^{\prime}=\frac{\lambda-\ln (\mathrm{K})}{\ln (2)}
$$

The parameters depend on the scoring system.
\square Statistically significant normalized score,

$$
S^{\prime}>\log \left(\frac{N}{E}\right)
$$

where E-value $=E$, and $N=$ size of search space.

Multiple Alignments

\square Global

- ClustalW, ClustalX
- MSA
- T-Coffee
- Local
- BLOCKS
- eMOTIF
- GIBBS
- HMMER
- MACAW
- MEME
- Other
- Profile Analysis from msa (UCSD)
- SAM HMM (from msa)

MSA of glyceraldehyde 3-phosphate dehydrogenases: example of high conservation

Y	GAKKVIISAP	SA	K	S	CTTNCLAPLA
man	GAKRVIISAP	SAD.APM. F	VMGVNHEKYD	NSLKIISNAS	CTTNCLAPLA
an	GAKKVIISAP	SAD	VVGVNEHTYQ	PNMDIVSNAS	CTTNCLAPLA
bacterium	GAKKVVMTGP	SKD	VKGANFDKY	AGQDIVSNAS	CTTNCLAPLA
yeas	GAKKVVITAP	SS.TAP	VMGVNEEKYT	SDLKIVSNAS	CTTNCLAPLA
archaeon	GADKVLISAP	PKGDEPVKQL	VYGVNHDEYD	GE. DVVSNAS	CTTNSITPVA
fly	KVINDNFEIV	EGLMTTVHAT	TATQKTVDGP	SGKLWRDGRG	AAQNIIPAST
human	KVIHDNFGIV	EGLMTTVHAI	TATQKTVDGP	SGKLWRDGRG	ALQNIIPAST
plan	KVVHEEFGIL	EGLMTTVHAT	TATQKTVDGP	SMKDWRGGRG	ASQNIIPSST
bacterium	KVINDNFGII	EGLMTTVHAT	TATQKTVDGP	SHKDWRGGRG	ASQNIIPSST
yeast	KVINDAFGIE	EGLMTTVHSL	TATQKTVDGP	SHKDWRGGRT	ASGNIIPSST
archaeon	KVLDEEFGIN	AGQLTTVHAY	TGSQNLMDGP	NGKP. RRRRA	AAENIIPTST
fly	GAAKAVGKVI	PALNGKLTGM	AFRVPTPNVS	VVDLTVRLGK	GASYDEIKAK
human	GAAKAVGKVI	PELNGKLTGM	AFRVPTANVS	VVDLTCRLEK	PAKYDDIKKV
plant	GAAKAVGKVL	PELNGKLTGM	AFRVPTSNVS	VVDLTCRLEK	GASYEDVKAA
bacterium	GAAKAVGKVL	PELNGKLTGM	AFRVPTPNVS	VVDLTVRLEK	AATYEQIKAA
yeast	GAAKAVGKVL	PELQGKLTGM	AFRVPTVDVS	VVDLTVKLNK	ETTYDEIKKV
archaeon	GAAQAATEVL	PELEGKLDGM	AIRVPVPNGS	ITEFVVDLDD	DVTESDVNAA

Slide: Courtesy J. Pevsner Page 57

MSA may need gaps

■ 1: HomoloGene:1330. Gene conserved in Euteleostomi

Yet another example

$N P$	061485.1
$X P$	855587.1
$N P$	776588.1
$N P$	033033.1
$N P$	599193.1
$N P$	990348.1
$N P$	956065.1
$N P$	648121.1
$X P$	366655.1
$X P$	329350.1
$N P$	195320.1
$N P$	179371.1
$N P$	190698.1
$N P$	195228.1
$N P$	001048639.1

NP	061485.1
$X P$	855587.1
$N P$	776588.1
$N P$	033033.1
$N P$	599193.1
$N P$	990348.1
$N P$	956065.1
$N P$	648121.1
$X P$	366655.1
$X P$	329350.1
$N P$	195320.1
$N P$	179371.1
$N P$	190698.1
$N P$	195228.1
$N P$	001048639.1

-----MQAIKCVVVGDGAVGKTCLL ISYTTNAFPGEYIPTVFDNYSANVM 45
-----MQAIKCVVVEDGAVGKTCLL ISYTTNAFPGEYIPTVFDNYSANVM
-----MQAIKCVVVGDGAVGKTCLL ISYTTNAFPGEYIPTVFDNYSANVM
-----MQAIKCVVVGDGAVGKTCLL ISYTTNAFPGEYIPTVF DNYSANVM
-----MQAIKCVVVGDGAVGKTCLL ISYTTNAFPGEYIPTVFDNYSANVM
-----MQAIKCVVVGDGAVGKTCLL ISYTTNAFPGEYIPTVFDNYSANVM
-----MQAIKCVVVGDGAVGKTCLL ISYTTNAFPGEYIPTVF DNYSANVM
-----MQAIKCVVVGDGAVGKTCLL ISYTTNAFPGEYIPTVFDNYSANVM MAAPGVQSLKCVVTGDGAVGKTCLL ISYTTNAFPGEYIPTVFDNYSASVM MLTGEMLTLDFLLL-------TCLLISYTTNAFPGEYIPTVFDNYSASVM --MSASRF IKCVTVGDGAVGKTCLL ISYTSNTFPTDYVPTVFDNFSANVV
--MSASRF IKCVTVGDGAVGKTCLL ISYTSNTFPTDYVPTVFDNFSANVV
--MSASRFVKCVTVGDGAVGKTCLL ISYTSNTFPTDYVPTVFDNFSANVV
--MSASRF IKCVTVGDGAVGKTCLL ISYTSNTFPTDYVPTVF DNFSANVI
--MSASRF IKCVTVGDGAVGKTCML ISYTSNTFPTDYVPTVFDNFSANVV

VDGKPVNLGLWDTAGQEDYDRLRPLSYPQTVGETYGKD ITSRGKDKP IAD	9
VDGKPVNLGLWD TAGQED YDRLRPLSYPQT------------------1000	76
VDGKPVNLGLWDTAGQEDYD	76
VDGKPVNLGLWDTAGQED YDRLRPLSYPQT-------------------1	76
	76
VDGKPVNLGLWD TAGQED YDRLRPLSYPQT-------------------1	76
VDGKPVNLGLWDTAGQEDYDRLRPLSYPQT	76
VDAKP INLGLWDTAG	
This insertion could be	
VDGKPVSLGLWDTAG	
due to alternative splicing	
VDGNTINLGL WDTAGQE	79
	77

Multiple Alignments: CLUSTALW

* identical
: conserved substitutions
. semi-conserved substitutions

> gi | 2213819
> gi | 12656123
> gi | 7512442
> gi | 1344282

Red:
Blue:
Magenta:
Green:
Gray:

CDN-ELKSEAIIEHLCASEFALR-------------MKIKEVKKENGDKK 223
----ELKSEAIIEHLCASEFALR-------------MKIKEVKKENGD- 31 CKNKNDDDNDIMETLCKNDFALK-------------IKVKEITYINRDTK 211 QDECKFDYVEVYETSSSGAFSLLGRFCGAEPPPHLVSSHHELAVLFRTDH 400

AVFPMLW (Small \& hydrophobic)
DE (Acidic)
RHK (Basic)
STYHCNGQ (Hydroxyl, Amine, Basic) Others

MSA: Progressive Method

-Perform global pairwise alignments
\square Build guide tree
\square Progressively align the sequences

How to Score Multiple Alignments?

\square Sum of Pairs Score (SP)

- Optimal alignment: $O\left(d^{N}\right)$ [Dynamic Prog]
- Approximate Algorithm: Approx Ratio 2
$>$ Locate Center: O(d $\left.\mathrm{d}^{2} \mathrm{~N}^{2}\right)$
> Locate Consensus: $O\left(\mathrm{~d}^{2} \mathrm{~N}^{2}\right)$
Consensus char: char with min distance sum Consensus string: string of consensus char
Center: input string with min distance sum

Multiple Alignment Methods

\square Phylogenetic Tree Alignment (NP-Complete)

- Given tree, task is to label leaves with strings
- Iterative Method(s)
- Build a MST using the distance function
\square Clustering Methods
- Hierarchical Clustering
- K-Means Clustering

Multiple Alignment Methods (Cont'd)

\square Gibbs Sampling Method

- Lawrence, Altschul, Boguski, Liu, Neuwald, Winton, Science, 1993
-Hidden Markov Model
- Krogh, Brown, Mian, Sjolander, Haussler, JMB, 1994

Multiple Sequence Alignments (MSA)

\square Choice of Scoring Function

- Global vs local
- Gap penalties
- Substitution matrices
- Incorporating other information
- Statistical Significance
\square Computational Issues
- Exact/heuristic/approximate algorithms for optimal MSA
- Progressive/Iterative/DP
- Iterative: Stochastic/Non-stochastic/Consistency-based
\square Evaluating MSAs
- Choice of good test sets or benchmarks (BAliBASE)
- How to decide thresholds for good/bad alignments

