CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

Giri Narasimhan

ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/BioinfS11.html

BLAST Parameters and Output

- □ Type of sequence, nucleotide/protein
- Word size, w
- \Box Gap penalties, p_1 and p_2
- Neighborhood Threshold Score, T
- Score Threshold, S
- E-value Cutoff, E
- Number of hits to display, H
- Database to search, D
- Scoring Matrix, M
- Score s and E-value e
 - E-value e is the expected number of sequences that would have an alignment score greater than the current score s.

BLAST algorithm: Phase 1

Phase 1: get list of word pairs (w=3) above threshold T

Example: for a human RBP queryFSGTWYA... GTW is a word in this query sequence

A list of words (w=3) is: FSG SGT GTW TWY WYA YSG TGT ATW SWY WFA FTG SVT GSW TWF WYS Phase 1: Find list of similar words

 \Box Find list of words of length w (here w = 3) and distance at least T (here T = 11) •GTW 22 **•**GSW 18 • ATW 16 16 NTW 13 •GTY GNW 10 GAW 9

Use BLOSUM to score word hits

Α	4																			
R	-1	5																		
Ν	-2	0	6																	
D	-2	-2	1	6																
С	0	-3	-3	-3	9															
Q	-1	1	0	0	-3	5		_												
Ε	-1	0	0	2	-4	2	5													
G	0	-2	0	-1	-3	-2	-2	6		_										
Η	-2	0	1	-1	-3	0	0	-2	8		_									
Ι	-1	-3	-3	-3	-1	-3	-3	-4	-3	4										
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4		_							
K	-1	2	0	-1	-1	1	1	-2	-1	-3	-2	5		_						
Μ	-1	-2	-2	-3	-1	0	-2	-3	-2	1	2	-1	5							
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6		-				
Р	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7		-			
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4		-		
Τ	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5		1	
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11		
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
	Α	R	Ν	D	С	Q	E	G	Η	I	L	K	M	F	Р	S	T	W	Y	V

1/27/11

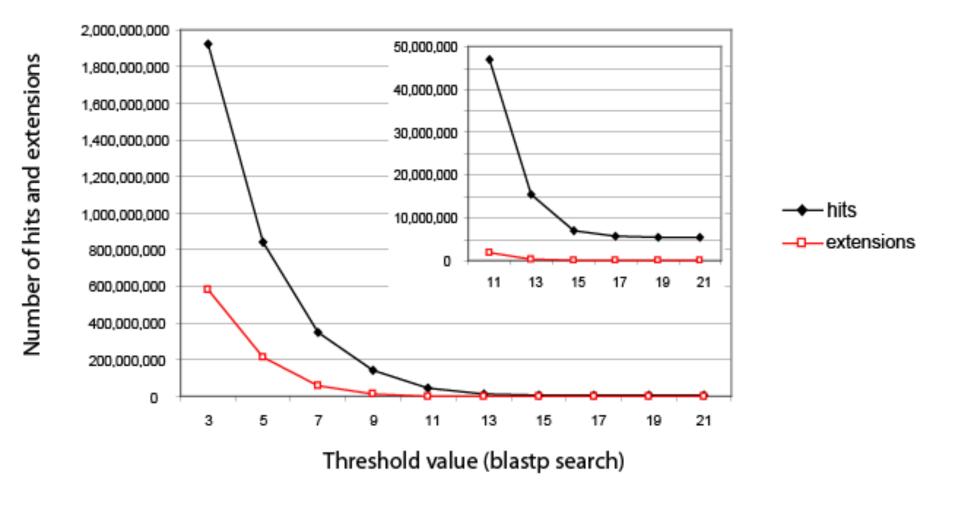
CAP5510 / CGS 5166

BLAST: Phases 2 & 3

Phase 2: Scan database for exact hits of similar words list and find HotSpots
Phase 3:

Extend good hit in either direction.

extend


•Keep track of the score (use a scoring matrix)

Stop when the score drops below some cutoff.
KENFDKARFS GTW YAMAKKDPEG 50 RBP (query)
MKGLDIQKVA GTW YSLAMAASD. 44 lactoglobulin (hit)

1/27/11

extend

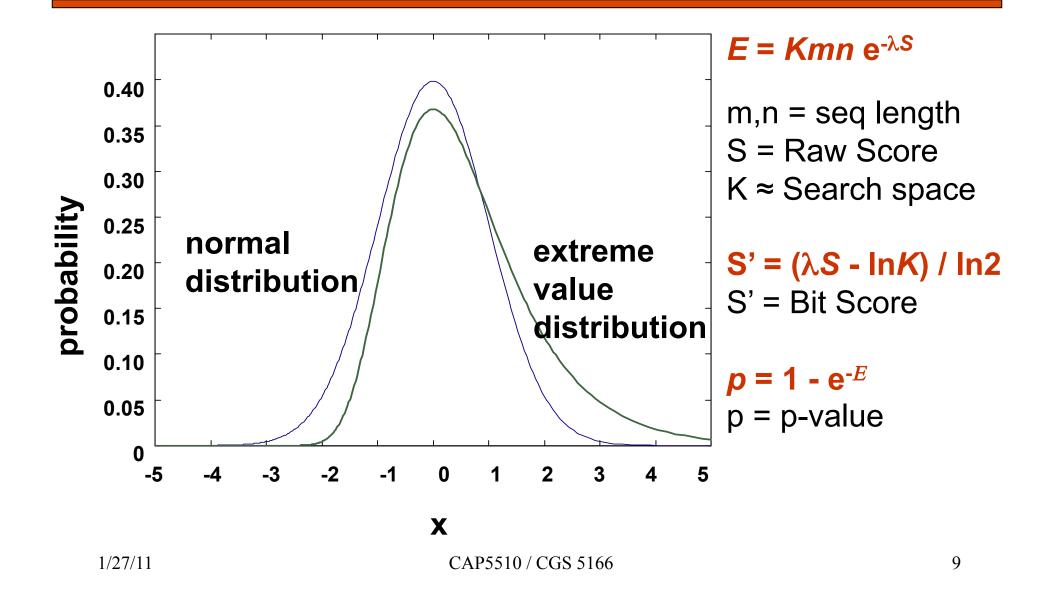
BLAST: Threshold vs # Hits & Extensions

1/27/11

CAP5510 / CGS 5166

Fig. 4.12 page 118

Word Size


Blastn: w = 7, 11, or 15.

w=15 gives fewer matches and is faster than w=11 or w=7.

$\Box Megablast: w = 28 \text{ to } 64.$

Megablast is VERY fast for finding closely related DNA sequences!

Scores: Follow Extreme Value Distribution

E-value versus P-value

E-value	P-value
10	0.9999546
5	0.99326205
2	0.86466472
1	0.63212056
0.1	0.09516258
0.05	0.04877058
0.001	0.00099950
0.0001	0.0001

E-values are easier to interpret; If query is short aa sequence, then use very large E-value; Sometimes even meaningful hits have large E-values.

Assessing whether proteins are homologous

<pre>>gi 4505583 ref NP 002562.1 progestagen-associated endometrial protein (placental protein 14,</pre>
Score = 32.0 bits (71), Expect = 0.49 Identities = 26/107 (24%), Positives = 48/107 (44%), Gaps = 11/107 (10%)
Query: 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84
+ K++ + + +GTW++MA + L + A V T + +L+ W+ Sbjct: 5 QTKQDLELPKLAGTWHSMAMAT-NNISLMATLKAPLRVHITSLLPTPEDNLEIVLHRWEN 63
Query: 85 -VCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTY 130 C + T +P KFK+ Y VA ++ ++DTDYD +
Sbjct: 64 NSCVEKKVLGEKTGNPKKFKINY-TVANEATLLDTDYDNF 102

RBP4 and **PAEP**:

Low bit score, E value 0.49, 24% identity ("twilight zone"). But they are indeed homologous. Try a BLAST search with PAEP as a query, and find many other lipocalins.

Difficulties with BLAST

Use human beta globin as a query against human RefSeq proteins, and blastp does not "find" human myoglobin. This is because the two proteins are too distantly related. PSI-BLAST at NCBI as well as hidden Markov models easily solve this problem.

How can we search using 10,000 base pairs as a query, or even millions of base pairs? Many BLAST-like tools for genomic DNA are available such as PatternHunter, Megablast, BLAT, and BLASTZ.

Related Tools

Megablast

- For long, closely-related sequences
- Uses large w and is very fast
- BLAT
 - UCSC tool
 - DB broken into words; query is searched
- PatternHunter
 - Generalized seeds used instead of words
- BLASTZ, Lagan, SSAHA

Rules of Thumb

- Most sequences with significant similarity over their entire lengths are homologous.
- Matches that are > 50% identical in a 20-40 as region occur frequently by chance.
- Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
- \Box A homologous to B & B to C \Rightarrow A homologous to C.
- Low complexity regions, transmembrane regions and coiled-coil regions frequently display significant similarity without homology.
- Greater evolutionary distance implies that length of a local alignment required to achieve a statistically significant score also increases.

Rules of Thumb

- Results of searches using different scoring systems may be compared directly using normalized scores.
- If S is the (raw) score for a local alignment, the normalized score S' (in bits) is given by

$$S' = \frac{\lambda - \ln(K)}{\ln(2)}$$

The parameters depend on the scoring system.

Statistically significant normalized score,

$$S' > \log\left(\frac{N}{E}\right)$$

where E-value = E, and N = size of search space.

Multiple Alignments

🛛 Global

- ClustalW, ClustalX
- MSA
- T-Coffee

Local

- BLOCKS
- eMOTIF
- GIBBS
- HMMER
- MACAW
- MEME
- Other
 - Profile Analysis from msa (UCSD)
 - SAM HMM (from msa)

MSA of glyceraldehyde 3-phosphate dehydrogenases: example of high conservation

fly	GAKKVIISAP	SAD.APMF	VCGVNLDAYK	PDMKVVSNAS	CTTNCLAPLA
human	GAKRVIISAP	SAD.APMF	VMGVNHEKYD	NSLKIISNAS	CTTNCLAPLA
plant	GAKKVIISAP	SAD.APMF	VVGVNEHTYQ	PNMDIVSNAS	CTTNCLAPLA
bacterium	GAKKVVMTGP	SKDNTPMF	VKGANFDKY.	AGQDIVSNAS	CTTNCLAPLA
yeast	GAKKVVITAP	SS.TAPMF	VMGVNEEKYT	SDLKIVSNAS	CTTNCLAPLA
archaeon	GADKVLISAP	PKGDEPVKQL	VYGVNHDEYD	GE.DVVSNAS	CTTNSITPVA

fly	KVINDNFEIV	EGLMTTVHAT	TATQKTVDGP	SGKLWRDGRG	AAQNIIPAST
human	KVIHDNFGIV	EGLMTTVHAI	TATQKTVDGP	SGKLWRDGRG	ALQNIIPAST
plant	KVVHEEFGIL	EGLMTTVHAT	TATQKTVDGP	SMKDWRGGRG	ASQNIIPSST
bacterium	KVINDNFGII	EGLMTTVHAT	TATQKTVDGP	SHKDWRGGRG	ASQNIIPSST
yeast	KVINDAFGIE	EGLMTTVHSL	TATQKTVDGP	SHKDWRGGRT	ASGNIIPSST
archaeon	KVLDEEFGIN	AGQLTTVHAY	TGSQNLMDGP	NGKP.RRRRA	AAENIIPTST

flyGAAKAVGKVIPALNGKLTGMAFRVPTPNVSVVDLTVRLGKGASYDEIKAKhumanGAAKAVGKVIPELNGKLTGMAFRVPTANVSVVDLTCRLEKPAKYDDIKKVplantGAAKAVGKVLPELNGKLTGMAFRVPTSNVSVVDLTCRLEKGASYEDVKAAbacteriumGAAKAVGKVLPELNGKLTGMAFRVPTPNVSVVDLTVRLEKAATYEQIKAAyeastGAAKAVGKVLPELQGKLTGMAFRVPTVDVSVVDLTVKLNKETTYDEIKKVarchaeonGAAQAATEVLPELEGKLDGMAIRVPVPNGSITEFVVDLDDDVTESDVNAA

CAP5510/CGS 5166 Slide: Courtesy J. Pevsner 17

Page 57

1/27/11

MSA may need gaps

🗖 1: HomoloGene:1330. Gene conserved in Euteleostomi

Multiple Sequence Alignment Generated by MUSCLE [<u>see reference]</u> versice 3.6 (using option: -maxiters 2).								
NP 001744.2	1	MSGGKYVDSEGHLYTVPIREQGNIYKPNNKAM-ADELSEKQVYDAHT	46					
XP 519325.2	1	MSGGKYVDSEGHLYTVPIREQGNIYKPNNKAM-ADELSEKQVYDAHT	46					
NP 001003296.1	1	MSGGKYVDSEGHLYTVPIREQGNIYKPNNKAM-AEEMSEKQVYDAHT	46					
NP 776429.1	1	MSGGKYVDSEGHLYTVPIREQGNIYKPNNKAM-AEEMNEKQVYDAHT	46					
NP 031642.1	1	MSGGKYVDSEGHLYTVPIREQGNIYKPNNKAM-ADEVTEKQVYDAHT	46					
NP 113744.1	1	MSGGKYVDSEGHLYTVPIREQGNIYKPNNKAM-ADEVNEKQVYDAHT	46					
XP 001234148.1	1	MEYFQEAFLYAAPVREQGNIYKPNNKMM-ADELSEKAVHDVHT	42					
NP 997816.1	1	MTSG-YKDGTPEEEYAHSPFIRKQGNIYKPNNKEMDNDSINEKTLQDVHT	49					
NP 001744.2	47	KEIDLVNRDPKHLNDDVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTK	96					
XP 519325.2	47	KEIDLVNRDPKHLNDDVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTK	96					
NP 001003296.1	47	KEIDLVNRDPKHLNDDVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTK	96					
NP 776429.1	47	KEIDLVNRDPKHLNDDVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTK	96					
NP 031642.1	47	KEIDLVNRDPKHLNDDVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTK	96					
NP 113744.1	47	KEIDLVNRDPKHLNDDVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTK	96					
XP 001234148.1	43	KEIDLVNRDPKHLNDDVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTK	92					
NP 997816.1	50	KEIDLVNRDPKHLNDDVVKVDFEDVIAEPAGTYSFDGVWKASFTTFTVTK	99					

CAP5510 / CGS 5166

1/27/11

Downlo

Yet another example

NP 061485.1	1	MQAIKCVVVGDGAVGKTCLLISYTTNAFPGEYIPTVFDNYSANVM 45	
XP 855587.1	1	MQAIKCVVVEDGAVGKTCLLISYTTNAFPGEYIPTVFDNYSANVM 45	
NP 776588.1	1	MQAIKCVVVGDGAVGKTCLLISYTTNAFPGEYIPTVFDNYSANVM 45	
NP 033033.1	1	MQAIKCVVVGDGAVGKTCLLISYTTNAFPGEYIPTVFDNYSANVM 45	
NP 599193.1	1	MQAIKCVVVGDGAVGKTCLLISYTTNAFPGEYIPTVFDNYSANVM 45	
NP 990348.1	1	MQAIKCVVVGDGAVGKTCLLISYTTNAFPGEYIPTVFDNYSANVM 45	
NP 956065.1	1	MQAIKCVVVGDGAVGKTCLLISYTTNAFPGEYIPTVFDNYSANVM 45	
NP 648121.1	1	MQAIKCVVVGDGAVGKTCLLISYTTNAFPGEYIPTVFDNYSANVM 45	
XP 366655.1	1	MAAPGVQSLKCVVTGDGAVGKTCLLISYTTNAFPGEYIPTVFDNYSASVM 50	
XP 329350.1	1	MLTGEMLTLDFLLLTCLLISYTTNAFPGEYIPTVFDNYSASVM 43	
NP 195320.1	1	MSASRFIKCVTVGDGAVGKTCLLISYTSNTFPTDYVPTVFDNFSANVV 48	
NP 179371.1	1	MSASRFIKCVTVGDGAVGKTCLLISYTSNTFPTDYVPTVFDNFSANVV 48	
NP 190698.1	1	MSASRFVKCVTVGDGAVGKTCLLISYTSNTFPTDYVPTVFDNFSANVV 48	
NP 195228.1	1	MSASRFIKCVTVGDGAVGKTCLLISYTSNTFPTDYVPTVFDNFSANVI 48	
NP 001048639.1	1	MSASRFIKCVTVGDGAVGKTCMLISYTSNTFPTDYVPTVFDNFSANVV 48	
NP 061485.1	46	VDGKPVNLGLWDTAGQEDYDRLRPLSYPQTVGETYGKDITSRGKDKPIAD 95	
XP 855587.1	46	VDGKPVNLGLWDTAGQEDYDRLRPLSYPQT	
NP 776588.1	46	VDGKPVNLGLWDTAGQEDYDRLRPLSYPQT	
NP 033033.1	46	VDGKPVNLGLWDTAGQEDYDRLRPLSYPQTD 76	
NP 599193.1	46	VDGKPVNLGLWDTAGQEDYDRLRPLSYPQTD 76	
NP 990348.1	46	VDGKPVNLGLWDTAGQEDYDRLRPLSYPQTD 76	
NP 956065.1	46	VDGKPVNLGLWDTAGQEDYDRLRPLSYPQTD 76	
NP 648121.1	46	VDAKPINLGLWDTAG	
XP 366655.1	51	VDGKPISLGLWDTAG This insertion could be	
XP 329350.1	44	VDGKPVSLGLWDTAG	
NP 195320.1	49	VNGATVNLGLWDTAG due to alternative splicing	
NP 179371.1	49	WNGATVNLGLWDTAG UUE IU AILEMAIIVE SPIICING	
NP 190698.1	49	VNGSTVNLGLWDTAGQEDYNRLRPLSYRGAD 79	
NP 195228.1	49	VDGNTINLGLWDTAGQEDYNRLRPLSYRGAD 79	1.0
NP 001048639.1	49	VDGSTVNCAR5510-ECGNRLFRGGYRGAD 77	19

1/27/11

Multiple Alignments: CLUSTALW

- * identical
- : conserved substitutions
- . semi-conserved substitutions

gi 2213819	CDN-ELKSEAIIEHLCASEFALRMKIKEVKKENGDKK 223
gi 12656123	ELKSEAIIEHLCASEFALRMKIKEVKKENGD- 31
gi 7512442	CKNKNDDDNDIMETLCKNDFALKIKVKEITYINRDTK 211
gi 1344282	QDECKFDYVEVYETSSSGAFSLLGRFCGAEPPPHLVSSHHELAVLFRTDH 400
	: . : * *:* . :*:
Red:	AVFPMLW (Small & hydrophobic)
Blue:	DE (Acidic)
Magenta:	RHK (Basic)
Green:	STYHCNGQ (Hydroxyl, Amine, Basic)
Gray:	Others

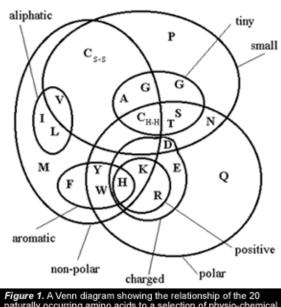


Figure 1. A Venn diagram showing the relationship of the 20 naturally occurring amino acids to a selection of physio-chemical properties thought to be important in the determination of protein structure.

CAP5510 / CGS 5166

MSA: Progressive Method

Perform global pairwise alignments Build guide tree Progressively align the sequences

How to Score Multiple Alignments?

□ Sum of Pairs Score (SP)

- Optimal alignment: O(d^N) [Dynamic Prog]
- Approximate Algorithm: Approx Ratio 2
 - Locate Center: O(d²N²)
 - Locate Consensus: O(d²N²)

Consensus char: char with min distance sum

Consensus string: string of consensus char

Center: input string with min distance sum

Multiple Alignment Methods

- Phylogenetic Tree Alignment (NP-Complete)
 - Given tree, task is to label leaves with strings
- Iterative Method(s)
 - Build a MST using the distance function
- Clustering Methods
 - Hierarchical Clustering
 - K-Means Clustering

Multiple Alignment Methods (Cont'd)

Gibbs Sampling Method

- Lawrence, Altschul, Boguski, Liu, Neuwald, Winton, Science, 1993
- Hidden Markov Model
 - Krogh, Brown, Mian, Sjolander, Haussler, JMB, 1994

Multiple Sequence Alignments (MSA)

Choice of Scoring Function

- Global vs local
- Gap penalties
- Substitution matrices
- Incorporating other information
- Statistical Significance
- Computational Issues
 - Exact/heuristic/approximate algorithms for optimal MSA
 - Progressive/Iterative/DP
 - Iterative: Stochastic/Non-stochastic/Consistency-based
- Evaluating MSAs
 - Choice of good test sets or benchmarks (BAliBASE)
 - How to decide thresholds for good/bad alignments