CAP 5510: Introduction to Bioinformatics

Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/BioinfS11.html

Microarray Data

	Expression Levels		
Gene	Sample A CONTROL	Sample B TREATMENT	
Gene1			
Gene2			
Gene3			
•••			

Microarray Analysis

Is Gene X upregulated? Downregulated? Had no change in expression levels?

Genes are represented by probes

Experiments may have repeats

NULL HYPOTHESIS

There is no change in gene expression levels for Gene X between <u>Control</u> and <u>Treatment</u>

Accept/Reject H₀ (Null Hypothesis)?

P-value thresholds

- P-value is probability of data assuming H_0 holds
- P-value threshold of 0.05 means probability of error when H₀ is <u>rejected</u> is 5%
- Fold change
 - If no repeats are done
- □t-Test
 - Parametric
 - Non-parametric
 - >Wilcoxon rank sum

Hypothesis Testing Logic

		Hypothesis Choice		
		НО	H1	
Decision	НО	Correctly Accept (TN)	Type II Error (FN) β	
	H1	Type I Error (FP) a	Correctly Reject (TP)	

Typical Values:

- Type I error of 0.05
- Type II error of 0.2

Problem with Hypothesis Testing

Not testing just one gene

- If multiple genes are tested, then t-Test assumes each test is independent
- Are the tests independent?
 - No!
- Need Correction
 - P-values need to be adjusted
 - Bonferroni or other correction methods needed
 - Achieved by controlling Type I error

Multiple Testing & Type I Errors

Type I Error of 0.05 means that there is a 5% error in prediction of FN by t-Test. IMPLICATIONS?

- If N=1000 genes & d=40 are differentially expressed (DE), then ...
 - ≻960 X 0.05 = 48 FPs
 - > There are more FPs than TPs
 - Type I error and correcting for multiple hypothesis testing are connected

Multiple Test Corrections

Bonferroni correction

- Use type I error = a / g = FWER = 0.05/1000
 - Family-wise Error (FWER)

>Too Conservative! Also reduce true positives!

Other less conservative corrections possible

Sidak correction, Westfall-Young correction, ...

Using False Discovery Rate (FDR) [Benjamini & Hochberg '95, Storey '02 & '03]

Earlier: 5% of all tests will result in FPs

With FDR adjusted p-value (or q-value): 5% of significant tests will result in false positives.

Rank	Anova (p)	q Value	 Power 	Cluster	
30	0.00436	0.0119	0.993		
77	0.00536	0.0119	0.987		
97	0.00631	0.0119	0.98		
29	0.00655	0.0119	0.979		
43	0.00605	0.0119	0.982		
23	0.0067	0.0119	0.977		
36	0.00632	0.0119	0.98		
28	0.00698	0.0119	0.975		
76	0.00685	0.0119	0.976		
60	0.0067	0.0119	0.977	0	
10	0.00479	0.0119	0.991		
13	0.00467	0.0119	0.991		
51	0.00432	0.0119	0.993		
91	0.0062	0.0119	0.981		
21	0.00611	0.0119	0.982		
46	0.00414	0.0119	0.994		
45	0.00739	0.0127	0.972		L
25	0.00822	0.0137	0.964		
53	0.00903	0.0137	0.956		
6	0.00919	0.0138	0.955	0	
52	0.01	0.0141	0.946		
2	0.00976	0.0141	0.949		
87	0.0101	0.0141	0.946		
19	0.0109	0.0141	0.938	0	
96	0.0102	0.0141	0.944		
55	0.011	0.0141	0.937		
50	0.00949	0.0141	0.952		
49	0.0115	0.0144	0.931		
32	0.0127	0.0144	0.918		

P-value vs Q-value

Consider example shown. Let N = 839. Marked item has p-value 0.01 and qvalue 0.0141. P-value threshold of 0.01 implies a 1% chance of false positives. Thus, we expect 839*0.01 = 8.39 FPs. Since item has rank 52, we expect to have 8 or 9 of these to be FPs.

Q-value threshold of 0.0141 implies a 1.41% of all spots with q-value less than this to be FPs. Thus, we expect 52*0.0141 = 0.7332 FPs, i.e., less than one FP.

CAP5510 / CGS5166