CAP 5510: Introduction to Bioinformatics

Giri Narasimhan

ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/BioinfS11.html

Microarray Data

Gene	Expression Levels	
	Sample A CONTROL	Sample B TREATMENT
Gene1		
Gene2		
Gene3		
\ldots		

Microarray Analysis

IIs Gene X upregulated? Downregulated? Had no change in expression levels?

- Genes are represented by probes
- Experiments may have repeats
-NULL HYPOTHESIS
- There is no change in gene expression levels for Gene X between Control and Treatment

Accept/Reject H_{0} (Null Hypothesis)?

$\square P$-value thresholds

- P-value is probability of data assuming H_{0} holds
- P-value threshold of 0.05 means probability of error when H_{0} is rejected is 5%
\square Fold change
- If no repeats are done

口t-Test

- Parametric
- Non-parametric
- Wilcoxon rank sum

Hypothesis Testing Logic

		Hypothesis Choice	
		H0	H1
Decision	H0	Correctly Accept (TN)	Type II Error (FN) β
	H1	Type I Error (FP) α	Correctly Reject (TP)

-Typical Values:

- Type I error of 0.05
- Type II error of 0.2

Problem with Hypothesis Testing

DNot testing just one gene
\square If multiple genes are tested, then t-Test assumes each test is independent
\square Are the tests independent?

- No!
\square Need Correction
- P-values need to be adjusted
- Bonferroni or other correction methods needed
- Achieved by controlling Type I error

Multiple Testing \& Type I Errors

\square Type I Error of 0.05 means that there is a 5% error in prediction of FN by \dagger-Test. IMPLICATIONS?

- If $\mathrm{N}=1000$ genes \& $\mathrm{d}=40$ are differentially expressed (DE), then ...
$>960 \times 0.05=48 \mathrm{FPs}$
> There are more FPs than TPs
$>$ Type I error and correcting for multiple hypothesis testing are connected

Multiple Test Corrections

\square Bonferroni correction

- Use type I error $=a / g=$ FWER $=0.05 / 1000$
> Family-wise Error (FWER)
$>$ Too Conservative! Also reduce true positives!
\square Other less conservative corrections possible
- Sidak correction, Westfall-Young correction, ...
-Using False Discovery Rate (FDR) [Benjamini \& Hochberg '95, Storey '02 \& '03]
- Earlier: 5\% of all tests will result in FPs
- With FDR adjusted p-value (or q-value): 5% of significant tests will result in false positives.

Rank	Anova (p)	q Value	- Power	Cluster
30	0.00436	0.0119	0.993	(
77	0.00536	0.0119	0.987	-
97	0.00631	0.0119	0.98	C
29	0.00655	0.0119	0.979	
43	0.00605	0.0119	0.982	(
23	0.0067	0.0119	0.977	Q
36	0.00632	0.0119	0.98	C
28	0.00698	0.0119	0.975	,
76	0.00685	0.0119	0.976	-
60	0.0067	0.0119	0.977	C
10	0.00479	0.0119	0.991	
13	0.00467	0.0119	0.991	0
51	0.00432	0.0119	0.993	0
91	0.0062	0.0119	0.981	(0)
21	0.00611	0.0119	0.982	
46	0.00414	0.0119	0.994	0
45	0.00739	0.0127	0.972	O
25	0.00822	0.0137	0.964	(
53	0.00903	0.0137	0.956	
6	0.00919	0.0138	0.955	
52	0.01	0.0141	0.946	
2	0.00976	0.0141	0.949	4
87	0.0101	0.0141	0.946	0
19	0.0109	0.0141	0.938	O
96	0.0102	0.0141	0.944	(3)
55	0.011	0.0141	0.937	Q
50	0.00949	0.0141	0.952	D
49	0.0115	0.0144	0.931	(
32	0.0127	0.0144	0.918	©

P-value vs Q-value

Consider example shown. Let $\mathrm{N}=839$. Marked item has p-value 0.01 and qvalue 0.0141 . P-value threshold of 0.01 implies a 1% chance of false positives. Thus, we expect $839 * 0.01=8.39$ FPs. Since item has rank 52, we expect to have 8 or 9 of these to be FPs.
Q-value threshold of 0.0141 implies a 1.41% of all spots with q-value less than this to be FPs. Thus, we expect $52 * 0.0141=0.7332$ FPs, i.e., less than one FP.

