

Jonathan Pevsner, Ph.D. **Bioinformatics** Johns Hopkins School Med.

November 22, 2010

alignment

Copyright notice

Many of the images in this powerpoint presentation are from Bioinformatics and Functional Genomics by Jonathan Pevsner (ISBN 0-471-21004-8). Copyright © 2009 by John Wiley & Sons, Inc.

These images and materials may not be used without permission from the publisher. We welcome instructors to use these powerpoints for educational purposes, but please acknowledge the source.

The book has a homepage at http://www.bioinfbook.org including hyperlinks to the book chapters.

Announcements

The moodle quiz from lecture 1 is due one week laterby today at noon. After then the quiz "closes" and won't be available to you.

The quiz from today's lecture ("opens" at 10:30 am) is due in one week later at noon. Because of the Thanksgiving break, I'm extending the deadline a day to Tuesday November 30 (5:00 pm).

Outline: pairwise alignment

- Overview and examples
- Definitions: homologs, paralogs, orthologs
- Assigning scores to aligned amino acids: Dayhoff's PAM matrices
- Alignment algorithms: Needleman-Wunsch, Smith-Waterman

Learning objectives

- · Define homologs, paralogs, orthologs
- Perform pairwise alignments (NCBI BLAST)
- Understand how scores are assigned to aligned amino acids using Dayhoff's PAM matrices
- Explain how the Needleman-Wunsch algorithm performs global pairwise alignments

Pairwise alignments in the 1950s β-corticotropin (sheep) ala gly glu asp asp glu Corticotropin A (pig) asp gly ala glu asp glu CYIQNCPLG Oxytocin CYFQNCPRG Vasopressin Page 46

1

Pairwise alignment: protein sequences can be more informative than DNA

- protein is more informative (20 vs 4 characters); many amino acids share related biophysical properties
- codons are degenerate: changes in the third position often do not alter the amino acid that is specified
- protein sequences offer a longer "look-back" time
- DNA sequences can be translated into protein, and then used in pairwise alignments

		Seco	nd letter		
	U	С	Α	G	
U	UUU UUC UUA UUA UUG	UCU UCC UCA UCG	UAU UAC Tyr UAA Stop UAG Stop	UGU UGC Cys UGA Stop UGG Trp	UCAG
с	CUU CUC CUA CUG	CCU CCC CCA CCG	$\left. \begin{matrix} \text{CAU} \\ \text{CAC} \end{matrix} \right\} \text{His} \\ \left. \begin{matrix} \text{CAA} \\ \text{CAG} \end{matrix} \right\} \text{Gin}$	CGU CGC CGA CGG	UCAG
A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	UCAG
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC Asp GAA GAA Glu	GGU GGC GGA GGG	UCAG

Pairwise alignment: protein sequences can be more informative than DNA

Many times, DNA alignments are appropriate

- --to confirm the identity of a cDNA
- --to study noncoding regions of DNA --to study DNA polymorphisms
- --to study DNA polymorphisms --example: Neanderthal vs modern human DNA

Query: 181 catcaactacaactccaaagacacccttacacccactaggatatcaacaaacctaccac 240

Outline: pairwise alignment

- Overview and examples
- Definitions: homologs, paralogs, orthologs
- Assigning scores to aligned amino acids: Dayhoff's PAM matrices
- Alignment algorithms: Needleman-Wunsch, Smith-Waterman

Definition: pairwise alignment

Pairwise alignment The process of lining up two sequences to achieve maximal levels of identity

(and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology.

Page 53

Definitions: two types of homology

Orthologs

Homologous sequences in different species that arose from a common ancestral gene during speciation; may or may not be responsible for a similar function.

Paralogs

Homologous sequences within a single species that arose by gene duplication.

CEU BLAST/Master	nt Results Saved Strategies Help	Choose align two
entin beauty teen	8. (Bitesto) (Bitesta) BLASTP programs search protein databases using a protein gr	
Enter accession i	eguntos gl. er FASTA sequence @ Fran Te Te	sequences
Or, upload file Job Title	Browse_ @	
Choose Sean	th Set	
Database Organism Optional Entrez Query Optional	Non-redundant protein sequences (p) Define organization area to de-completions will be supported Define organization communication, accessing or taxis 2 cities 22 hips taxa will be shown.	
	Enter an Entrez query to Imit search 🛞	
Des esteres Carlo		
Program Sele Algorithm	Clon Platup (protein protein BLAST) C PS/BLAST (Pastern Specific Iterated BLAST) C PreBLAST (Pastern His Initiated BLAST) Choose a BLAST signifim: @	

Definitions: identity, similarity, conservation

Identity

The extent to which two (nucleotide or amino acid) sequences are invariant.

Similarity

The extent to which nucleotide or protein sequences are related. It is based upon identity plus conservation.

Conservation

Changes at a specific position of an amino acid or (less commonly, DNA) sequence that preserve the physico-chemical properties of the original residue.

- 1 .MKWVWALLLLA.AWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDP 48 :: || || || .||.||. |:||:.|:.|||.|||| 1 MLRICVALCALATCWA...QDCQVSNIQVMQNFDRSRYTGRWYAVAKKDP 47
- 49 EGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVCADMVGTFTDTED 98

Outline: pairwise alignment

- Overview and examples
- Definitions: homologs, paralogs, orthologs
- Assigning scores to aligned amino acids: Dayhoff's PAM matrices
- Alignment algorithms: Needleman-Wunsch, Smith-Waterman

Dayhoff's 34 pr	otein superfamilies
Protein	PAMs per 100 million years
Ig kappa chain Kappa casein luteinizing hormone b lactalbumin complement component : epidermal growth factor proopiomelanocortin pancreatic ribonuclease haptoglobin alpha serum albumin phospholipase A2, group prolactin carbonic anhydrase C Hemoglobin α Hemoglobin β	37 33 30 27 3 26 21 21 20 19 18 19 18 19 17 16 12 12 Page 59

Protein I	PAMs per 100 million years
apolipoprotein A-II	10
lysozyme	9.8
gastrin	9.8
myoglobin	8.9
nerve growth factor	8.5
myelin basic protein	7.4
thyroid stimulating hormone	b 7.4
parathyroid hormone	7.3
parvalbumin	7.0
trypsin	5.9
insulin	4.4
calcitonin	4.3
arginine vasopressin	3.6
adenvlate kinase 1	3.2

Dayhoff's approach to assigning scores for any two aligned amino acid residues

Dayhoff et al. defined the score of two aligned residues i,j as 10 times the log of how likely it is to observe these two residues (based on the empirical observation of how often they are aligned in nature) divided by the background probability of finding these amino acids by chance. This provides a score for each pair of residues.

$$s_{i,j} = 10 \times \log\left(\frac{q_{i,j}}{p_i}\right)$$

Day wha	Dayhoff's numbers of "accepted point mutations": what amino acid substitutions occur in proteins?								
	А	R	Ν	D	С	Q	E	G	
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	
Α									
R	30								
Ν	109	17							
D	154	0	532						
С	33	10	0	0					
Q	93	120	50	76	0				
Е	266	0	94	831	0	422			
G	579	10	156	162	10	30	112		
Н	21	103	226	43	10	243	23	10	
Dayho	Dayhoff (1978) p.346. Page								

Multiple sequence alignment of glyceraldehyde 3-phosphate dehydrogenases: columns of residues may have high or low conservation								
	1				L			
fly human plant bacterium yeast archaeon fly human plant bacterium yeast	GAKKVIISAP GAKRVIISAP GAKKVIISAP GAKKVVITAP GADKVLISAP KVINDNFEIV KVIHDNFGIV KVVHEEFGIL KVINDAFGII KVINDAFGI	SAD.APMF SAD.APMF SAD.APMF SKDDTPMF SS.TAPMF PKGDEPVKQL EGLMTTVHAT EGLMTTVHAT EGLMTTVHAT EGLMTTVHAT	VCGVNLDAYK VMGVNHEKYD VVGVNEHYYQ VKGANFDKY. VMGVNEEKYT YYGVNHDEYD TATQKTVDGP TATQKTVDGP TATQKTVDGP TATQKTVDGP TATQKTVDGP TATQKTVDGP	PDMKVVSNAS NSLKIISNAS PNMDIVSNAS SDLKIVSNAS GE.DVVSNAS GE.DVVSNAS SGKLWRDGRG SHKDWRGGRG SHKDWRGGRG SHKDWRGGRG	CTTNCLAPLA CTTNCLAPLA CTTNCLAPLA CTTNCLAPLA CTTNCLAPLA CTTNSITPVA AAQNIIPAST ASQNIIPAST ASQNIIPSST ASQNIIPSST			
fly human plant bacterium yeast archaeon	GAAKAVGKVI GAAKAVGKVI GAAKAVGKVL GAAKAVGKVL GAAKAVGKVL GAAQAATEVL	PALNGKLTGM PELNGKLTGM PELNGKLTGM PELNGKLTGM PELQGKLTGM PELEGKLDGM	AFRVPTPNVS AFRVPTANVS AFRVPTSNVS AFRVPTPNVS AFRVPTVDVS AIRVPVPNGS	VVDLTVRLGK VVDLTCRLEK VVDLTCRLEK VVDLTVRLEK VVDLTVKLNK ITEFVVDLDD	GASYDEIKAK PAKYDDIKKV GASYEDVKAA AATYEQIKAA ETTYDEIKKV DVTESDVNAA	Page 57		

The rela	tive mu	utability of a	mino	o acid	ls
Asn Ser Asp Glu Ala Thr Ile Met Gln Val	134 120 106 102 100 97 96 94 93 74	H A Lị P G Tị P C Ti C Ti	is rg ys ro ly rhe eu ys rp	66 65 56 49 41 41 40 20 18	
					Page 63

Gly	8.9%	Arg	4.1%	
Ala	8.7%	Asn	4.0%	
Leu	8.5%	Phe	4.0%	
Lys	8.1%	Gln	3.8%	
Ser	7.0%	lle	3.7%	
Val	6.5%	His	3.4%	
Thr	5.8%	Cys	3.3%	
Pro	5.1%	Tvr	3.0%	
Glu	5.0%	Met	1.5%	
Asp	4.7%	Trp	1.0%	
• blue • The	e=6 codons; r se frequencie	red=1 codon es f _i sum to 1	I	
				Page

Day wha	Dayhoff's numbers of "accepted point mutations": what amino acid substitutions occur in proteins?								
	Α	R	Ν	D	С	Q	E	G	
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	
А									
R	30								
Ν	109	17							
D	154	0	532						
С	33	10	0	0					
Q	93	120	50	76	0				
E	266	0	94	831	0	422			
G	579	10	156	162	10	30	112		
Н	21	103	226	43	10	243	23	10	
								Page 6	

	Dayhoff's PAM1 mutation probability matrix Original amino acid									
	А	R	Ν	D	C	Q	Е	G	Н	
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	His	
А	9867	2	9	10	3	8	17	21	2	
R	1	9913	1	0	1	10	0	0	10	
Ν	4	1	9822	36	0	4	6	6	21	
D	6	0	42	9859	0	6	53	6	4	
С	1	1	0	0	9973	0	0	0	1	
Q	3	9	4	5	0	9876	27	1	23	
Е	10	0	7	56	0	35	9865	4	2	
G	21	1	12	11	1	3	7	9935	1	
Η	1	8	18	3	1	20	1	0	9912	
Ι	2	2	3	1	2	1	2	0	0	
-										

	Dayhoff's PAM1 mutation probability matrix									
	A Ala	R Arg	N Asn	D Asp	C Cys	Q Gln	E Glu	G Gly	H His	
Α	9867	2	9	10	3	8	17	21	2	
R	1	9913	1	0	1	10	0	0	10	
Ν	4	1	9822	36	0	4	6	6	21	
D	6	0	42	9859	0	6	53	6	4	
С	1	1	0	0	9973	0	0	0	1	
Q	3	9	4	5	0	9876	27	1	23	
Е	10	0	7	56	0	35	9865	4	2	
G	21	1	12	11	1	3	7	9935	1	
Н	1	8	18	3	1	20	1	0	9912	
Ι	2	2	3	1	2	1	2	0	0	
Eac	Each element of the matrix shows the probability that an original amino acid (top) will be replaced by another amino acid (side)									

Substitution Matrix

A substitution matrix contains values proportional to the probability that amino acid *i* mutates into amino acid *j* for all pairs of amino acids.

Substitution matrices are constructed by assembling a large and diverse sample of verified pairwise alignments (or multiple sequence alignments) of amino acids.

Substitution matrices should reflect the true probabilities of mutations occurring through a period of evolution.

The two major types of substitution matrices are PAM and BLOSUM.

PAM matrices: Point-accepted mutations	
PAM matrices are based on global alignments of closely related proteins.	
The PAM1 is the matrix calculated from comparisor of sequences with no more than 1% divergence. At evolutionary interval of PAM1, one change has occurred over a length of 100 amino acids.	is an
Other PAM matrices are extrapolated from PAM1. F PAM250, 250 changes have occurred for two protei over a length of 100 amino acids.	For ins
All the PAM data come from closely related proteins (>85% amino acid identity).	Page 63

	А	R	Ν	D	С	0	Е	G	Н
	Ala	Arg	Asn	Asp	Cys	Ğln	Glu	Gly	His
Α	9867	2	9	10	3	8	17	21	2
R	1	9913	1	0	1	10	0	0	10
Ν	4	1	9822	36	0	4	6	6	21
D	6	0	42	9859	0	6	53	6	4
С	1	1	0	0	9973	0	0	0	1
Q	3	9	4	5	0	9876	27	1	23
Е	10	0	7	56	0	35	9865	4	2
G	21	1	12	11	1	3	7	9935	1
Η	1	8	18	3	1	20	1	0	9912
Ι	2	2	3	1	2	1	2	0	0

Dayhoff's PAM0 mutation probability matrix: the rules for extremely slowly evolving proteins							
DAMO		D	N		C		F
PAMU	Ala	Arg	Asn	Asp	Cvs	Gln	Glu
А	100%	0%	0%	0%	0%	0%	0%
R	0%	100%	0%	0%	0%	0%	0%
Ν	0%	0%	100%	0%	0%	0%	0%
D	0%	0%	0%	100%	0%	0%	0%
С	0%	0%	0%	0%	100%	0%	0%
Q	0%	0%	0%	0%	0%	100%	0%
Е	0%	0%	0%	0%	0%	0%	100%
G	0%	0%	0%	0%	0%	0%	0%
Top: original amino acid							

Dayhoff's PAM2000 mutation probability matrix:								
the rules for very distantly related proteins								
PAM∞	А	R	Ν	D	С	Q	Е	G
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly
А	8.7%	8.78	8.78	8.78	8.78	8.78	8.78	8.7
R	4.1%	4.18	4.18	:4.18	4.18	4.18	4.18	4.1
Ν	4.0%	4.08	4.08	:4.08	4.08	4.08	4.08	4.0
D	4.7%	4.78	:4.78	:4.78	4.78	4.78	4.78	4.7
С	3.3%	3.38	3.38	:3.3	3.38	3.38	3.38	3.3
Q	3.8%	3.88	3.88	3.88	3.88	3.88	3.88	3.8
E	5.0%	5.08	:5.0%	5.0%	5.08	5.08	5.08	5.0
G	8.9%	8.98	8.98	8.98	8.98	8.98	8.98	8.9
lop: original amino acid								
Side: replacement amino acid Page 68								

 $S(trp,trp) = 10 \log_{10} (0.55/0.010) = 17.4$

PAM: "Accepted point mutation" • Two proteins with 50% identity may have 80 changes per 100 residues. (Why? Because any residue can be subject to back mutations.) • Proteins with 20% to 25% identity are in the "twilight zone" and may be statistically significantly related. • PAM or "accepted point mutation" refers to the "hits" or matches between two sequences (Dayhoff & Eck, 1968)

Page 75

- Overview and examples
- Definitions: homologs, paralogs, orthologs
- Assigning scores to aligned amino acids: Dayhoff's PAM matrices
- Alignment algorithms: Needleman-Wunsch, Smith-Waterman

Two kinds of sequence alignment: global and local

We will first consider the global alignment algorithm of Needleman and Wunsch (1970).

We will then explore the local alignment algorithm of Smith and Waterman (1981).

Finally, we will consider BLAST, a heuristic version of Smith-Waterman. We will cover BLAST in detail on Monday.

Page 76

Three steps to global alignment with the Needleman-Wunsch algorithm

[1] set up a matrix

[2] score the matrix

[3] identify the optimal alignment(s)

Try using needle to implement a Needleman-Wunsch global alignment algorithm to find the optimum alignment (including gaps): http://www.ebi.ac.uk/emboss/align/

Page 81

Program: needle Rundate: Tue Aug 22 16:29:58 2006 Align_format: srspair £-----Aligned_sequences: 2 1: EMBOSS_001 2: EMBOSS_001 Matrix: EBLOSUM62 Gap_penalty: 10.0 Extend_penalty: 0.5 es: 2 # Length: 149
Identity:
Similarity: 65-149 (40.6%) 90/149 (60.4%) 9/149 (6.0%) # Gaps: # Score: 292.5 . #-----1 KYHLTPEEKSAVTALWGKY--NYDEVGGEALGRLLVYYPYTQRFFESFGD || :|.:|..|.||| :...|.||||:...|.| 1 KY-LSPADKTNYKAAVGKYGAHAGEYGAEALERMFLSFPTTKTYFPHF-D ENBOSS_001 48 EMBOSS_001 48 EMBOSS 001 49 LSTPDAVMGNPKVKANGKKVLGAFSDGLAHLDNLKGTFATLSELNCDKLH 98 49 IS-----BGSAQVKGBGKKVADAITNAVAHVDDMPNALSALSDLHAHKLR EMBOSS_001 93 EMBOSS_001 99 VDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAVQKVVAGVANALAHKVH 147 94 VDPVNFKLISHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR EMBOSS_001 142

	Global alignment (top) include ignored by local alignment	es matches (bottom)	
NP_824492.1	1 MOSEMTVHTVEYIRYRIPEQQSAEFLAAYTRAAAQLAAAPQCVDYELARC	. ,	
NP_337032.1	1		
NP_024492.1	51 EEDPEHFVLRITWISTEDHIEGPRKSELPPDFLAEIRPYISSIEEMRHYK		
NP_337032.1	1 ;		
NP_824492.1	101 PTTVROTOAAVPTLYAMAGGAEAPARLTEVPYEKVLKDDVLAPVPEGNAP		
NP_337032.1	1 MEGNIQMPHSPYDAVGGAKTPDAIVSRPYAQVAEDEVLRRVYP	4E0/ identity	
NP_024492.1	151 ERAARVALMLGEVFOGPAAYSETQOGHGHMVAKHLGKNITEVQRR	15% Identity	
NP_337032.1	44 EDDLAGAEERLEMPLEQTWOODRTYSE-QROMPRLEMRMAPPRISLIERD		
NP_824492.1	196 BWVBLLQDAADDAJDF-DAEFRSAFLAYABWJTRLAVYPSJPDAVPPAE		
NP_337032.1	93 ARLKORTAVASIDSETLEDERKKELLDILERAARSLVNSPY		
NP_024492.1	245 QPVPQWSW33AMPPYQP 260 '		
NP_337032.1	135 134		
NP_824492.1	113 TLYAMAGGAEAPARLTEVFYEKVLKDDVLAPVPEGMAPEHAAHVA		
NP_337032.1	10 SPYDAVOOAKTPDAIVSRFYAQVAEDEVLRRVYPEDDLAGAEERLR		
NP_824492.1	158 LMLGEVPOGPAAYSETQOGHGHMVARHLGRDITEVQRRRWVNLLQDAADD	30% identity	
NP_337032.1	56 MPLEQTWOOPRTYSE-QROHPRLEMEHAPPRISLIERDAMLRCMHTAVAS		
NP_824492.1	208 AGLPT-DAEPRSAFLAYAE 225		
NP_337032.1	105 IDEETLEOBERSELLOTLE 123 NP_82449	2, NP_337032	page 81

Statistical significance of pairwise alignment

We will discuss the statistical significance of alignment scores in the next lecture (BLAST). A basic question is how to determine whether a particular alignment score is likely to have occurred by chance. According to the null hypothesis, two aligned sequences are not homologous (evolutionarily related). Can we reject the null hypothesis at a particular significance level alpha?

