

Copyright notice

Many of the images in this powerpoint presentation are from Bioinformatics and Functional Genomics by Jonathan Pevsner (ISBN 0-471-21004-8). Copyright © 2009 by John Wiley \& Sons, Inc.

These images and materials may not be used without permission from the publisher. We welcome instructors to use these powerpoints for educational purposes, but please acknowledge the source.

The book has a homepage at http://www.bioinfbook.org including hyperlinks to the book chapters.

Learning objectives

- Define homologs, paralogs, orthologs
- Perform pairwise alignments (NCBI BLAST)
- Understand how scores are assigned to aligned amino acids using Dayhoff's PAM matrices
- Explain how the Needleman-Wunsch algorithm performs global pairwise alignments

Learning objectives
• Define homologs, paralogs, orthologs
- Perform pairwise alignments (NCBI BLAST)
- Understand how scores are assigned to aligned
amino acids using Dayhoff's PAM matrices
•Explain how the Needleman-Wunsch algorithm
performs global pairwise alignments

Outline: pairwise alignment

- Overview and examples
- Definitions: homologs, paralogs, orthologs
- Assigning scores to aligned amino acids: Dayhoff's PAM matrices
- Alignment algorithms: Needleman-Wunsch, Smith-Waterman

Pairwise alignments in the 1950s
corticotropin (sheep) Corticotropin A (pig)

Oxytocin Vasopressin
ala gly glu asp asp glu asp gly ala glu asp glu

CYIQNCPLG CYFQNCPRG

Pairwise alignment: protein sequences can be more informative than DNA

- protein is more informative (20 vs 4 characters); many amino acids share related biophysical properties
- codons are degenerate: changes in the third position often do not alter the amino acid that is specified
- protein sequences offer a longer "look-back" time
- DNA sequences can be translated into protein, and then used in pairwise alignments

Pairwise sequence alignment is the most fundamental operation of bioinformatics

- It is used to decide if two proteins (or genes) are related structurally or functionally
- It is used to identify domains or motifs that are shared between proteins
- It is the basis of BLAST searching (next week)
- It is used in the analysis of genomes

Outline: pairwise alignment

- Overview and examples
- Definitions: homologs, paralogs, orthologs
- Assigning scores to aligned amino acids: Dayhoff's PAM matrices
- Alignment algorithms: Needleman-Wunsch, Smith-Waterman

Query: 181 catcaactacaactccaaagacacccttacacccactaggatatcaacaaacctacccac 240

Pairwise alignment: protein sequences can be more informative than DNA

- Many times, DNA alignments are appropriate
--to confirm the identity of a cDNA
--to study noncoding regions of DNA
--to study DNA polymorphisms
--example: Neanderthal vs modern human DNA

Definition: pairwise alignment

Pairwise alignment

The process of lining up two sequences
to achieve maximal levels of identity
(and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology.

Definition: homology

Homology

Similarity attributed to descent from a common ancestor.

Definitions: two types of homology

Orthologs

Homologous sequences in different species that arose from a common ancestral gene during speciation; may or may not be responsible for a similar function.

Paralogs

Homologous sequences within a single species that arose by gene duplication.

Orthologs and paralogs are often viewed in a single tree

Source: NCBI

General approach to pairwise alignment

- Choose two sequences
- Select an algorithm that generates a score
- Allow gaps (insertions, deletions)
- Score reflects degree of similarity
- Alignments can be global or local
- Estimate probability that the alignment occurred by chance

Pairwise alignment result of human beta globin and myoglobin: the score is a sum of match, mismatch, gap creation, and gap extension scores

```
Score = 18.1 bits (35), Expect =0.015, Method: Composition-based stats.
Score = 18.1 bits (35), Expect = 0.015, Nothod: Composition-based,
Ouery 12 VTALMGKvNVD--EVGGEALGRLL 33
```



```
match 4 11 5 6 65 45 sum of matches: +60
mismatch -1. }\mp@subsup{}{}{6
gap open
gap extend
sum of gap penalties: -12
total yaw score: 60-13-12 =35
```

Pairwise alignment result of human beta globin and myoglobin: the score is a sum of match, mismatch, gap creation, and gap extension scores

```
        Identities=11/24 (454), Positives = 12/24 (50%),Gaps =2/24 (8%)
    Ouery 12 vzalMGKvNvD--EvGGEALGRLL }3
    Sbjet 11 V WLNGGKVEADIPGHGOEVLIRLE GLE 34
    match 4 11 5 6 65 & 5 sum of matches: +60
    mismatch {-1 1 6 4 0
    l}\begin{array}{l}{\mathrm{ gap open gap extend}}\\{\mathrm{ gateren}}
    gap extend \romern sum of gap penalties:-12
V matching V earns +4
    These scores come from
T matching L earns -1
    a "scoring matrix"!
```


Definitions: homology

Homology

Similarity attributed to descent from a common ancestor.

Definitions: identity, similarity, conservation

Identity

The extent to which two (nucleotide or amino acid) sequences are invariant.

Similarity

The extent to which nucleotide or protein sequences are related. It is based upon identity plus conservation.

Conservation

Changes at a specific position of an amino acid or (less commonly, DNA) sequence that preserve the physico-chemical properties of the original residue.

Definition: pairwise alignment

Pairwise alignment

The process of lining up two sequences to achieve maximal levels of identity (and conservation, for amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology.
Mind the gaps
score = 18.1 bits (35), Expect = 0.015, Method; Composition-based stats
score = 18.1 bits (35), Expect = 0.015, Method; Composition-based stats
Identities = 11/24 (45t), Positives = 12/24 (50*), Gaps = 2/24 (8*)
Identities = 11/24 (45t), Positives = 12/24 (50*), Gaps = 2/24 (8*)
Ouery 12 vzalMGkvnvD--EvgGEALGRLL }3
Ouery 12 vzalMGkvnvD--EvgGEALGRLL }3
Sbjet 11 VLNVGGKVEADIPGHGOEVLIRLF 34
Sbjet 11 VLNVGGKVEADIPGHGOEVLIRLF 34
match 4 11 5 6 65 4 5 sum of matches: +60
match 4 11 5 6 65 4 5 sum of matches: +60
mismatch -1.1 0
mismatch -1.1 0
gap opon -2 sum of gap penalties: -12
gap opon -2 sum of gap penalties: -12
gap extend
gap extend
total rav score: 60-13-12=35
total rav score: 60-13-12=35
First gap position scores -11
Second gap position scores -1
Gap creation tends to have a large negative score;
Gap extension involves a small penalty

Gaps

- Positions at which a letter is paired with a null are called gaps.
- Gap scores are typically negative.
- Since a single mutational event may cause the insertion or deletion of more than one residue, the presence of a gap is ascribed more significance than the length of the gap. Thus there are separate penalties for gap creation and gap extension.
- In BLAST, it is rarely necessary to change gap values from the default.

Pairwise alignment of retinol-binding protein and β-lactoglobulin:
Example of an alignment with internal, terminal gaps

1 MKWVWALLLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP

KKDPEG 50 RBP
1 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP

8 DPAKFKMKYWGVASFLQGGNDDHWIVDTDYDTYAV...............YSC 136 RB

137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP

Pairwise alignment of retinol-binding protein from human (top) and rainbow trout (O. mykiss): Example of an alignment with few gaps

1 .MKWVWALLLLLA. AWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDP 48

49 EGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVCADMVGTFTDTED 98

. . . .
GNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADS 148 98 PAKFKMRYWGAASYLQTGNDDHWIDDTDYDNYAIHYSCREVDLDGTCLDG 147
149 YSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGRSERNLL 199

Pairwise sequence alignment allows us to look back billions of years ago (BYA)

When you do a pairwise alignment of homologous human and plant proteins, you are studying sequences that last shared a common ancestor 1.5 billion years ago!

Page 56

Multiple sequence alignment of glyceraldehyde 3-phosphate dehydrogenases: example of extremely high conservation

fly	gakkvilsa	SAD.APM	cG	PDMK	cttncla
man	GAKRVIISA	SAD.APM	VMgVnhekro	NSL	
plant	GAKKVIISAP	SAD.APM..F	VVGvNEHTYQ	PNMDIVSNAS	Ctт
ba	GAKKVVMTGP	SKDNTPM.	vkGANFDKY	AGQDIVSNAS	ctincla
ye	GAKKVVITAP	ss.tapm	vmgVneekyt	SDLKIVSNAS	(tid
archaeon	GADKVLISAP	PKGDEPVKQL	YGVNHDE	GE.DVVSNA	ctt
fly	NDN	Eglmttvhat	TATQKTVDGP	SGKLWRDG	AAQ
human	KVIHDNFGIV	EGLMTTVHAI	TATQKTVDGP	SGKLWRDGR	ALQNIIP
plan	kVVHEEFGIL	EGLMTTVHAT	TATQKTVDGP	SMKDWRGGR	ASQNII
bacteriu	kVINDNFGII	EgLMttvhat	TATQKTVDG	SHKDWRGGR	ASQ
yeast	KVINDAFGIE	EGLMTTVHSL	TATQKTVDGP	SHKDWRGGR	ASGN
chaeon	kVLDEEFGIN	AGQLTVAA	TGSQNLMDGP	NGKP. R RR	
	GAAKAVGKVI	PALNGKLTGM	AFRVPTPNVS	VVDLTVRLG	GASYDE
human	gaAkavgkvi	PELNGKLTGM	AFRVPTANVS	VVDLTCRLE	PAKYDDI
plant	gaAkAvgkvL	PELNGKLTGM	AFRVPTSNVS	VVDLTCRLE	GASYEDVKA
ium	GAAKAVGKVL	PELNGKLTGM	AFRVPTPNVS	VVDL	
yeast	gatkavg	PELQGK	AF	VVDLTVKLnk	
archaeo					

Outline: pairwise alignment

- Overview and examples
- Definitions: homologs, paralogs, orthologs
- Assigning scores to aligned amino acids: Dayhoff's PAM matrices
- Alignment algorithms: Needleman-Wunsch, Smith-Waterman

Dayhoff＇s approach to assigning scores for any two aligned amino acid residues

Dayhoff et al．defined the score of two aligned residues i，j as 10 times the log of how likely it is to observe these two residues（based on the empirical observation of how often they are aligned in nature）divided by the background probability of finding these amino acids by chance．This provides a score for each pair of residues．

$$
s_{i, j}=10 \times \log \left(\frac{q_{i, j}}{p_{i}}\right)
$$

Dayhoff＇s numbers of＂accepted point mutations＂： what amino acid substitutions occur in proteins？

	A Ala	R Arg	N Asn	D Asp	C Cys	Q Gln	E Glu	G Gly		
A										
R	30									
N	109	17								
D	154	0	532							
C	33	10	0	0						
Q	93	120	50	76	0					
E	266	0	94	831	0	422				
G	579	10	156	162	10	30	112			
H	21	103	226	43	10	243	23	10		Dayhoff（1978）p．346．
:---										
$又 又 又 ~$										

Page 57
glyceraldehyde 3-phosphate dehydrogenases: columns of residues may have high or low conservation

fly	GAKKVIISAP	SAD.APM. .F	vcglnldayk	PDMKVVSNAS	cttnclapla
human	GAKRVIISAP	SAD.APM. .F	VMGVNHEKYD	NSLKIISNAS	cttnclapla
plant	GAKKVIISAP	SAD.APM..F	vVGvNEHTYQ	PNMDIVSNAS	cttnclapla
bacterium	GAKKVVMTGP	SKDNTPM. .F	VKGANFDKY.	AGQDIVSNAS	cttnclapla
yeast	GAKKVVITAP	SS.TAPM. .F	vmgvneekyt	SDLKIVSNAS	cttnclapla
archaeon	GADKVLISAP	PKGDEPVKQL	VYGVNHDEYD	GE.DVVSNAS	CTTNSITPVA
fly	KVINDNFEIV	EGLMtTVHAT	TATQKTVDGP	SGKLWRDGRG	AAQNIIPAST
human	KVIHDNFGIV	EGLMTTVHAI	TATQKTVDGP	SGKLWRDGRG	ALQNIIPAST
plant	kVVHEEFGIL	EGLMTTVHAT	TATQKTVDGP	SMKDWRGGRG	ASQNIIPSST
bacterium	kVINDNFGII	EGLMTTVHAT	TATQKTVDGP	SHKDWRGGRG	ASQNIIPSST
yeast	kVINDAFGIE	EGLMTTVHSL	TATQKTVDGP	SHKDWRGGRT	ASGNIIPSST
archaeon	KVLDEEFGIN	AGQLTTVHAY	TGSQNLMDGP	NGKP. RRRRA	AAENIIPTST
fly	gaAkavgkvi	PaLngkltgm	AFRVPTPNVS	VVdLtvrlgk	GASYDEIKAK
human	gaAkavgkvi	PELNGKLTGM	AFRVPTANVS	VVDLTCRLEK	PAKYDDIKKV
plant	GAAKAVGKVL	PELNGKLTGM	AFRVPTSNVS	VVDLTCRLEK	GASYEDVKAA
bacterium	GAAKAVGKVL	PELNGKLTGM	AFRVPTPNVS	VVDLTVRLEK	AATYEQIKAA
yeast	GAAKAVGKVL	PELQGKLTGM	AFRVPTVDVS	VVDLTVKLNK	ETTYDEIKKV
archaeon	GAAQAATEVL	PELEGKLDGM	AIRVPVPNGS	ITEFVVDLDD	DVTESDVNAA

The relative mutability of amino acids

Normalized frequencies of amino acids

Gly	8.9%	Arg	4.1%
Ala	8.7%	Asn	4.0%
Leu	8.5%	Phe	4.0%
Lys	8.1%	Gln	3.8%
Ser	7.0%	lle	3.7%
Val	6.5%	His	3.4%
Thr	5.8%	Cys	3.3%
Pro	5.1%	Tyr	3.0%
Glu 5.0%	Met	1.5%	
Asp	4.7%	Trp	1.0%
- blue=6 codons; red=1 codon			
- These frequencies f_{i} sum to 1			

Dayhoff's numbers of "accepted point mutations": what amino acid substitutions occur in proteins?

	A Ala	R Arg	N Asn	D Asp	C Cys	Q Gln	E Glu	Gly A
R	30							
N	109	17						
D	154	0	532					
C	33	10	0	0				
Q	93	120	50	76	0			
E	266	0	94	831	0	422		
G	579	10	156	162	10	30	112	
H	21	103	226	43	10	243	23	10

Substitution Matrix

A substitution matrix contains values proportional to the probability that amino acid i mutates into amino acid j for all pairs of amino acids.

Substitution matrices are constructed by assembling a large and diverse sample of verified pairwise alignments (or multiple sequence alignments) of amino acids.

Substitution matrices should reflect the true probabilities of mutations occurring through a period of evolution.

The two major types of substitution matrices are PAM and BLOSUM.

PAM matrices: Point-accepted mutations

PAM matrices are based on global alignments of closely related proteins.

The PAM1 is the matrix calculated from comparisons of sequences with no more than 1\% divergence. At an evolutionary interval of PAM1, one change has occurred over a length of 100 amino acids.

Other PAM matrices are extrapolated from PAM1. For PAM250, 250 changes have occurred for two proteins over a length of 100 amino acids.

All the PAM data come from closely related proteins ($>85 \%$ amino acid identity).

Dayhoff's PAM0 mutation probability matrix: the rules for extremely slowly evolving proteins

PAM0	A Ala	R Arg	N Asn	D Asp	C Cys	Q Gln	E Glu
A	100%	0%	0%	0%	0%	0%	0%
R	0%	100%	0%	0%	0%	0%	0%
N	0%	0%	100%	0%	0%	0%	0%
D	0%	0%	0%	100%	0%	0%	0%
C	0%	0%	0%	0%	100%	0%	0%
Q	0%	0%	0%	0%	0%	100%	0%
E	0%	0%	0%	0%	0%	0%	100%
G	0%	0%	0%	0%	0%	0%	0%

Top: original amino acid Side: replacement amino acid Page 68

Why do we go from a mutation probability matrix to a log odds matrix?

- We want a scoring matrix so that when we do a pairwise alignment (or a BLAST search) we know what score to assign to two aligned amino acid residues.
- Logarithms are easier to use for a scoring system. They allow us to sum the scores of aligned residues (rather than having to multiply them).

How do we go from a mutation probability matrix to a log odds matrix?

- The cells in a log odds matrix consist of an "odds ratio":

$$
\begin{aligned}
& \text { the probability that an alignment is authentic } \\
& \text { the probability that the alignment was random }
\end{aligned}
$$

The score S for an alignment of residues a, b is given by:
$S(a, b)=10 \log _{10}\left(M_{a b} / p_{b}\right)$
As an example, for tryptophan,
$S($ trp,trp $)=10 \log _{10}(0.55 / 0.010)=17.4$

What do the numbers mean

 in a log odds matrix?A score of +2 indicates that the amino acid replacement occurs 1.6 times as frequently as expected by chance.

A score of 0 is neutral.
A score of -10 indicates that the correspondence of two amino acids in an alignment that accurately represents homology (evolutionary descent) is one tenth as frequent as the chance alignment of these amino acids.

BLOSUM Matrices

BLOSUM matrices are based on local alignments.
BLOSUM stands for blocks substitution matrix.

BLOSUM62 is a matrix calculated from comparisons of sequences with no less than 62% divergence.

BLOSUM Matrices

BLOSUM Matrices

All BLOSUM matrices are based on observed alignments; they are not extrapolated from comparisons of closely related proteins.

The BLOCKS database contains thousands of groups of multiple sequence alignments.

BLOSUM62 is the default matrix in BLAST 2.0.
Though it is tailored for comparisons of moderately distant proteins, it performs well in detecting closer relationships. A search for distant relatives may be more sensitive with a different matrix.

PAM matrices: Point-accepted mutations

PAM matrices are based on global alignments of closely related proteins.

The PAM1 is the matrix calculated from comparisons of sequences with no more than 1\% divergence. At an evolutionary interval of PAM1, one change has occurred over a length of 100 amino acids.

Other PAM matrices are extrapolated from PAM1. For PAM250, 250 changes have occurred for two proteins over a length of 100 amino acids.

All the PAM data come from closely related proteins (>85\% amino acid identity).

Two randomly diverging protein sequences change in a negatively exponential fashion

Evolutionary distance in PAMs

At PAM1, two proteins are 99\% identical At PAM10.7, there are 10 differences per 100 residues At PAM80, there are 50 differences per 100 residues At PAM250, there are $\mathbf{8 0}$ differences per 100 residues

PAM: "Accepted point mutation"

- Two proteins with 50% identity may have 80 changes per 100 residues. (Why? Because any residue can be subject to back mutations.)
- Proteins with 20% to 25% identity are in the "twilight zone" and may be statistically significantly related.
- PAM or "accepted point mutation" refers to the "hits" or matches between two sequences (Dayhoff \& Eck, 1968)

Two kinds of sequence alignment: global and local

We will first consider the global alignment algorithm of Needleman and Wunsch (1970).

We will then explore the local alignment algorithm of Smith and Waterman (1981).

Finally, we will consider BLAST, a heuristic version of Smith-Waterman. We will cover BLAST in detail on Monday.

Outline: pairwise alignment

- Overview and examples
- Definitions: homologs, paralogs, orthologs
- Assigning scores to aligned amino acids: Dayhoff's PAM matrices
- Alignment algorithms: Needleman-Wunsch, Smith-Waterman

Global alignment with the algorithm of Needleman and Wunsch (1970)

- Two sequences can be compared in a matrix along x - and y-axes.
- If they are identical, a path along a diagonal can be drawn
- Find the optimal subpaths, and add them up to achieve the best score. This involves
--adding gaps when needed
--allowing for conservative substitutions
--choosing a scoring system (simple or complicated)
- $\mathrm{N}-\mathrm{W}$ is guaranteed to find optimal alignment(s)

Page 76

Three steps to global alignment with the Needleman-Wunsch algorithm
[1] set up a matrix
[2] score the matrix
[3] identify the optimal alignment(s)

Four possible outcomes in aligning two sequences

[1] identity (stay along a diagonal) [2] mismatch (stay along a diagonal)
[3] gap in one sequence (move vertically!)
[4] gap in the other sequence (move horizontally!)

Start Needleman-Wunsch with an identity matrix

(e)

Sequence 2
(from honeybee globin) F M D T P L N E

Start Needleman-Wunsch with an identity matrix

		Sequence 2							
		F	M	D	T	P	L	N	E
	F	6	0	-3	-2	-4	0	-3	-3
	K	-3	-1	-1	-1	-1	-2	0	1
	H	-1	-2	-1	-2	-2	-3	1	0
\&	M	0	5	-3	-1	-2	2	-2	2
	E	-3	-2	2	-1	-1	-3	0	5
ס্চ	D	-3	-3	6	-1	-1	-4	1	2
	P	-4	-2	-1	-1	7	-3	-2	1
	L	0	2	-4	-1	-3	4	-3	-3
	E	-3	-2	2	-1	-1	-3	0	5

Page 77

Fill in the matrix using "dynamic programming"

Fill in the matrix using "dynamic programming"
(a)

Fill in the matrix using "dynamic programming"
(b)

Score $=\operatorname{Max}\left\{\mathrm{F}(i-1, j-1)+\mathrm{s}\left(x_{j}, y_{i}\right)\right.$ $\{\mathrm{F}(i-1, j)$ - gap penalty
$\mathrm{F}(i, j-1)$ - gap penalty

Score $($ this example $)=+1$ (match $)$
-2 (mismatch) -2 (gap penalty)

Fill in the matrix using "dynamic programming"
Fill in the matrix using "dynamic programming"

Page 78

Fill in the matrix using "dynamic programming"

Fill in the matrix using "dynamic programming"
(f) Sequence 2 F M D T P L N E

Needleman-Wunsch: dynamic programming

$\mathrm{N}-\mathrm{W}$ is guaranteed to find optimal alignments, although the algorithm does not search all possible alignments.

It is an example of a dynamic programming algorithm: an optimal path (alignment) is identified by
incrementally extending optimal subpaths.
Thus, a series of decisions is made at each step of the alignment to find the pair of residues with the best score.

Try using needle to implement a NeedlemanWunsch global alignment algorithm to find the optimum alignment (including gaps):
http://www.ebi.ac.uk/emboss/align/

Global alignment versus local alignment

Global alignment (Needleman-Wunsch) extends from one end of each sequence to the other.

Local alignment finds optimally matching
regions within two sequences ("subsequences").
Local alignment is almost always used for database searches such as BLAST. It is useful to find domains (or limited regions of homology) within sequences.

Smith and Waterman (1981) solved the problem of performing optimal local sequence alignment. Other methods (BLAST, FASTA) are faster but less thorough.

How the Smith-Waterman algorithm works

Set up a matrix between two proteins (size $\mathrm{m}+1, \mathrm{n}+1$)
No values in the scoring matrix can be negative! $\mathrm{S} \geq 0$
The score in each cell is the maximum of four values:
[1] $\mathrm{s}(\mathrm{i}-1, \mathrm{j}-1)$ + the new score at $[i, j]$ (a match or mismatch)
[2] $s(i, j-1)$ - gap penalty
[3] s(i-1,j) - gap penalty
[4] zero

Smith-Waterman algorithm allows the alignment

of subsets of sequences
Sequence 1 (length m)

Page 83

Try using SSEARCH to perform a rigorous SmithWaterman local alignment: http://fasta.bioch.virginia.edu/

Rapid, heuristic versions of Smith-Waterman: FASTA and BLAST

Smith-Waterman is very rigorous and it is guaranteed to find an optimal alignment.

But Smith-Waterman is slow. It requires computer space and time proportional to the product of the two sequences being aligned (or the product of a query against an entire database).

Gotoh (1982) and Myers and Miller (1988) improved the algorithms so both global and local alignment require less time and space.

FASTA and BLAST provide rapid alternatives to S-W.

Statistical significance of pairwise alignment

We will discuss the statistical significance of alignment scores in the next lecture (BLAST). A basic question is how to determine whether a particular alignment score is likely to have occurred by chance. According to the null hypothesis, two aligned sequences are not homologous (evolutionarily related). Can we reject the null hypothesis at a particular significance level alpha?

Pairwise alignments with dot plots:

graphical displays of relatedness with NCBI's BLAST
[1] Compare human cytoglobin (NP_599030, length 190 amino acids) with itself. The output includes a dot plot. The data points showing amino acid identities appear as a diagonal line.
[2] Compare cytoglobin with a globin from the snail Biomphalaria glabrata (accession CAJ44466, length 2,148 amino acids. See lots of repeated regions!

Pairwise alignments with dot plots: cytoglobin versus itself yields a straight line

Pairwise alignments with dot plots: cytoglobin versus itself (but with 15 amino acids deleted from one copy)

Pairwise alignments with dot plots: cytoglobin versus a snail globin

Next in the course...

Take the quiz (on pairwise alignment), due in a week (because of the Thanksgiving break, it's due TUESDAY at 5 pm).

Next Monday: BLAST

