CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/BioinfS13.html

Sequence Alignment

BLAST Variants

Nucleotide BLAST

- Standard blastn
- **MEGABLAST** (Compare large sets, Near-exact searches)
- Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering)
- Protein BLAST
 - Standard blastp
 - **PSI-BLAST** (Position Specific Iterated BLAST)
 - PHI-BLAST (Pattern Hit Initiated BLAST; reg expr. Or Motif search)
 - Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering, PAM-30)
- Translating BLAST
 - Blastx: Search nucleotide sequence in protein database (6 reading frames)
 - Tblastn: Search protein sequence in nucleotide dB
 - Tblastx: Search nucleotide seq (6 frames) in nucleotide DB (6 frames)

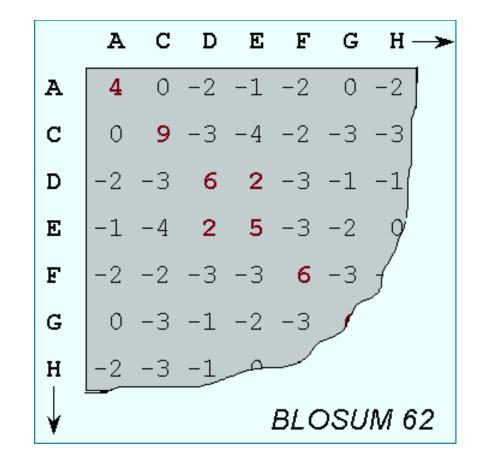
BLAST Cont'd

RPS BLAST

 Compare protein sequence against Conserved Domain DB; Helps in predicting rough structure and function

Pairwise BLAST

 blastp (2 Proteins), blastn (2 nucleotides), tblastn (protein-nucleotide w/ 6 frames), blastx (nucleotide-protein), tblastx (nucleotide w/6 framesnucleotide w/ 6 frames)


Specialized BLAST

- Human & Other finished/unfinished genomes
- P. falciparum: Search ESTs, STSs, GSSs, HTGs
- VecScreen: screen for contamination while sequencing
- IgBLAST: Immunoglobin sequence database

BLAST Parameters and Output

- Type of sequence, nucleotide/protein
- Word size, w
- \Box Gap penalties, p_1 and p_2
- Neighborhood Threshold Score, T
- Score Threshold, S
- E-value Cutoff, E
- Number of hits to display, H
- Database to search, D
- Scoring Matrix, M
- Score s and E-value e
 - E-value e is the expected number of sequences that would have an alignment score greater than the current score s.

How to score mismatches?

Scoring Matrix to Use

- PAM 40
- □ PAM 160
- □ PAM 250

BLOSUM90BLOSUM80

- BLUSUMOU
- BLOSUM62
- BLOSUM30

Short alignments with high similarity (70-90%) Members of a protein family (50-60%) Longer alignments (divergent sequences) (~30%)

Short alignments with high similarity (70-90%) Members of a protein family (50-60%) Finding all potential hits (30-40%) Longer alignments (divergent sequences) (<30%)

BLAST algorithm: Phase 1

- Phase 1: get list of word pairs (w=3) above threshold T
- Example: for a human RBP queryFSGTWYA...
- **GTW** is a word in this query sequence

```
A list of words (w=3) is:
FSG SGT GTW TWY WYA
YSG TGT ATW SWY WFA
FTG SVT GSW TWF WYS
```

Use BLOSUM to score word hits

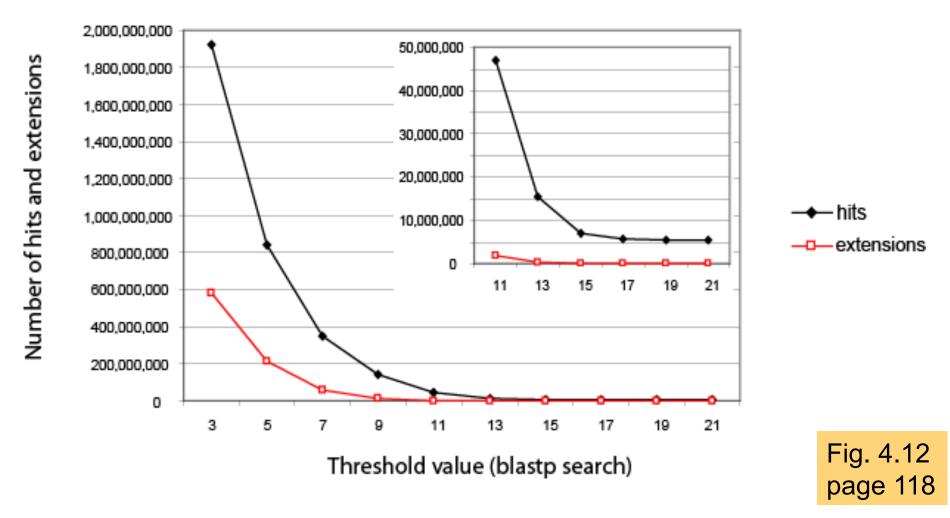
Α	4																			
R	-1	5																		
Ν	-2	0	6																	
D	-2	-2	1	6																
С	0	-3	-3	-3	9															
Q	-1	1	0	0	-3	5														
Ε	-1	0	0	2	-4	2	5													
G	0	-2	0	-1	-3	-2	-2	6												
Η	-2	0	1	-1	-3	0	0	-2	8											
Ι	-1	-3	-3	-3	-1	-3	-3	-4	-3	4										
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4									
K	-1	2	0	-1	-1	1	1	-2	-1	-3	-2	5								
Μ	-1	-2	-2	-3	-1	0	-2	-3	-2	1	2	-1	5							
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6						
Р	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7					
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4				
Τ	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5		_	
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11		
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
	Α	R	Ν	D	С	Q	Ε	G	Η	Ι	L	K	Μ	F	P	S	Τ	W	Y	V

1/28/13

Phase 1: Find list of similar words

 \Box Find list of words of length w (here w = 3) and distance at least T (here T = 11) •GTW 22 •GSW 18 • ATW 16 •NTW 16 •GTY 13 10 •GNW GAW 9

BLAST: Phases 2 & 3


- Phase 2: Scan database for exact hits of similar words list and find HotSpots
- Phase 3:
 - Extend good hit in either direction.
 - •Keep track of the score (use a scoring matrix)
 - Stop when the score drops below some cutoff.
 - KENFDKARFSGTWYAMAKKDPEG 50 RBP (query)

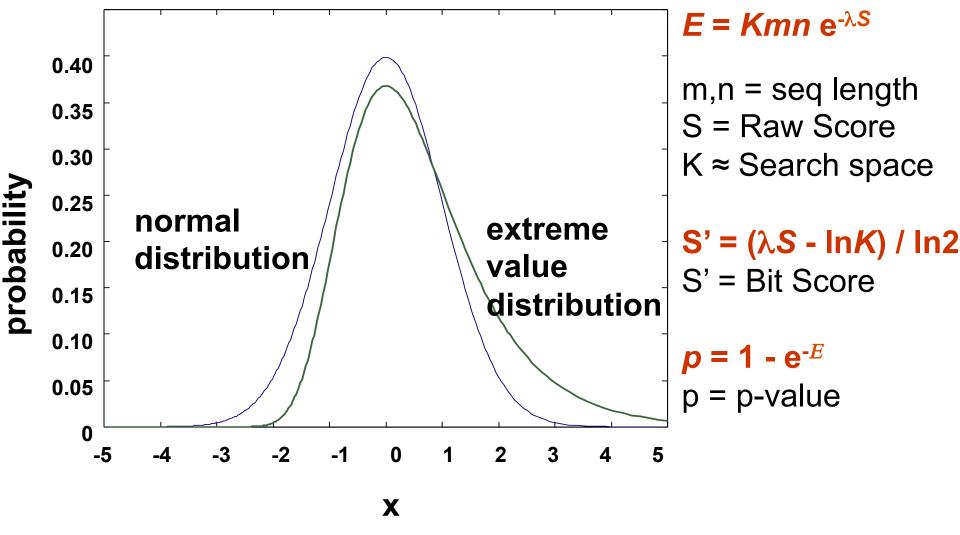
extend

MKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin (hit)

extend

BLAST: Threshold vs # Hits & Extensions

Word Size


□Blastn: w = 7, 11, or 15.

w=15 gives fewer matches and is faster than w=11 or w=7.

$\Box Megablast: w = 28 to 64.$

Megablast is VERY fast for finding closely related DNA sequences!

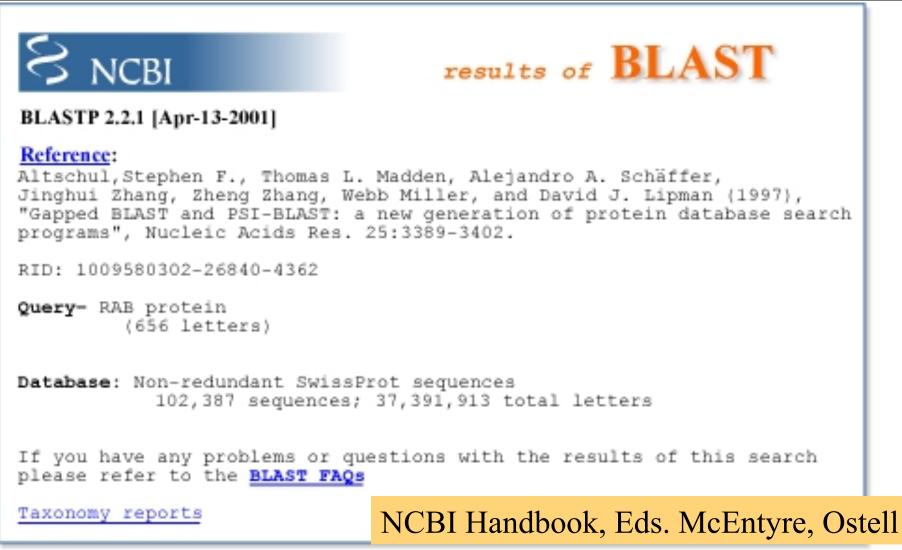
Scores: Follow Extreme Value Distribution

1/28/13

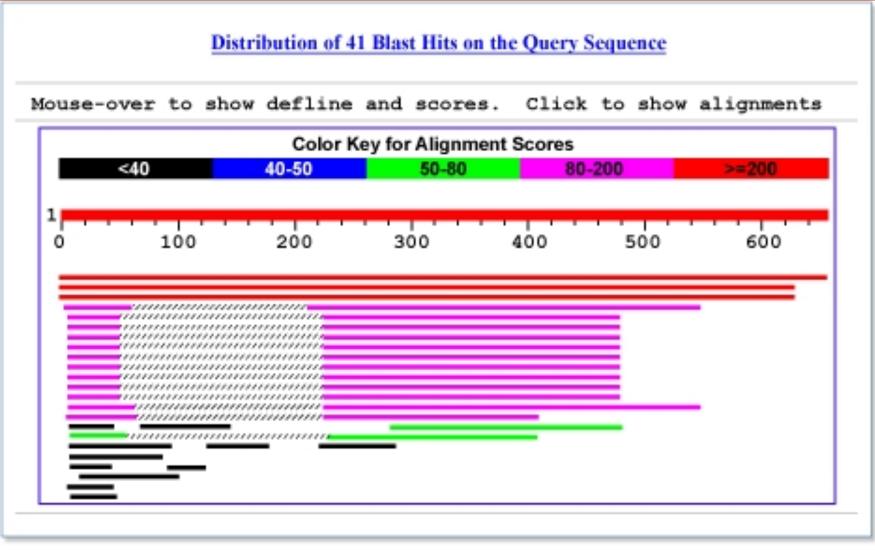
CAP5510/CGS5166

14

E-value versus P-value


E-value	P-value
10	0.9999546
5	0.99326205
2	0.86466472
1	0.63212056
0.1	0.09516258
0.05	0.04877058
0.001	0.00099950
0.0001	0.0001

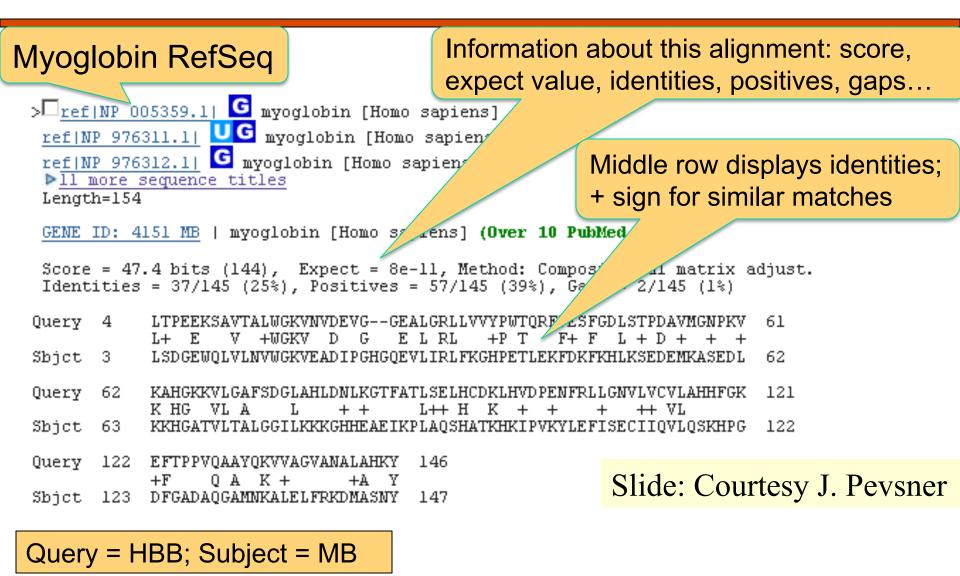
E-values are easier to interpret; If query is short aa sequence, then use very large E-value; Sometimes even meaningful hits have large E-values.


BLAST: Steps

- Choose your sequence
- Choose your tool
- Choose your database
- Select parameters, if needed
- □ Interpret your results

BLAST report header

Graphical Overview of BLAST Results


List of hits with one line descriptions

Sequences producing significant alignments:	Score (bits)	E Value
(a) (b)	(c)	(d)
gi 116365 sp P26374 RAE2 HUMAN Rab proteins geranylgeranylt	1216	0.0
gi 21431807 sp P24386 RAE1 HUMAN Rab proteins geranylgerany	879	0.0
gi 585775 sp P37727 RAE1 RAT Rab proteins geranylgeranyltra	846	0.0
gi 13626886 sp Q61598 GDIC MOUSE RAB GDP dissociation inhib	127	5e-29
gi 729566 sp P39958 GDI1 YEAST SECRETORY PATHWAY GDP DISSOC	127	5e-2
gi 13626813 sp 097556 GDIB CANFA Rab GDP dissociation inhib	126	1e-2
gi 13638229 sp P50397 GDIB MOUSE RAB GDP dissociation inhib	125	3e-2
gi 1707888 sp P50398 GDIA RAT RAB GDP dissociation inhibito	124	7e-2
gi 121108 sp P21856 GDIA BOVIN Rab GDP dissociation inhibit	124	7e-2
gi 21903424 sp P50396 GDIA MOUSE Rab GDP dissociation inhib	124	7e-2
gi 13626812 sp 097555 GDIA CANFA RAB GDP dissociation inhib	124	8e-2
gi 1707886 sp P31150 GDIA HUMAN Rab GDP dissociation inhibi	123	9e-2
gi 13638228 sp P50395 GDIB HUMAN Rab GDP dissociation inhib	122	2e-2
gi 1707891 sp P50399 GDIB RAT RAB GDP DISSOCIATION INHIBITO	121	5e-2
gi 1723467 sp Q10305 YD4C SCHPO Putative secretory pathway	120	8e-2
gi 585776 sp P32864 RAEP YEAST RAB proteins geranylgeranylt	97	7e-2
gi 10720243 sp 093831 RAEP CANAL RAB proteins geranylgerany	74	9e-1
gi 2498411 sp Q49398 GLF_MYCGE_UDP-galactopyranose_mutase	35	0.63
gi 11135401 sp Q9XBQ9 STHA AZOVI Soluble pyridine nucleotid	34	1.0
gi 11135075 sp 005139 STHA PSEFL Soluble pyridine nucleotid	33	1.3
gi 11135195 sp P57112 STHA PSEAE Soluble pyridine nucleotid	33	1.8
gi 22257022 sp Q8TZJ8 RLA0 PYRFU Acidic ribosomal protein P	33	2.1
gi 3915516 sp P94488 YNAJ BACSU Hypothetical symporter ynaJ	32	3.4
gi 231788 sp P30599 CHS2_USTMA CHITIN SYNTHASE 2 (CHITIN-UD	32 32	3.7
gi 2498412 sp P75499 GLF MYCPN UDP-galactopyranose mutase		4.2
gi 547891 sp P36225 MAP4 BOVIN Microtubule-associated prote	32	4.2
gi 586602 sp P37747 GLF ECOLI UDP-galactopyranose mutase	32	4.6

List of alignments

-	<pre>sp P26374 RAE2 HUMAN Rab proteins geranylgeranyltransferase component & 2 (Rab escort protein 2) (RBP-2) (Choroideraemia-like protein) Length = 656</pre>
	6 bits (2186), Expect = 0.0 = 432/632 (68%), Positives = 489/632 (77%), Gaps = 13/632 (2%)
M	ADNLPTEFDVVIIGTGLPESILAAACSRSGQRVLHIDSRSYYGGNWASFSFSGLLSWLK 60 IADNLP++FDV++IGTGLPESI+AAACSRSGQRVLH+DSRSYYGGNWASFSFSGLLSWLK IADNLPSDFDVIVIGTGLPESIIAAACSRSGORVLHVDSRSYYGGNWASFSFSGLLSWLK 60
Query: 61 E	YYQQNNDIGEESTVVWQDLIHETEEAITLRKKDETIQHTEAFPYASQDMEDNVEEIGALQ 120 YYQ+NND+ E++ +WQ+ I E EEAI L KD+TIQH E F YASQD+ +VEE GALQ
	YQENNDVVTENS-MWQEQILENEEAIPLSSKDKTIQHVEVFCYASQDLHKDVEEAGALQ 119
K	NPSLGVSNTFTEVLDSALPEESQLSYFNSDEMPAKHTQKSDTEISLEVTDVEESV 176 N + S S LP + S E+PA+ +Q E S EV D E + NHASVTSAQSAEAAEAAETSCLPTAVEPLSMGSCEIPAEQSQCPGPESSPEVNDAEATG 179
	KEKYCGDKTCMHTVXXXXXXXXXXXTVEDKADEPIRNRITYSQIVKEGRRFNIDLVSK 236 KE + V+D + P +NRITYSQI+KEGRRFNIDLVS+
	KENSDAKSSTEBPSENVPKVQDNTETPKKNRITYSQIIKEGRRFNIDLVSQ 231
	LYSQGLLIDLLIKSDVSRYVEFKNVTRILAFREGKVEQVPCSRADVFNSKELTMVEKRM 296 LYS+GLLIDLLIKS+VSRY EFKN+TRILAFREG VEQVPCSRADVFNSK+LTMVEKRM
-	LYSRGLLIDLLIKSNVSRYAEFKNITRILAFREGTVEÖVPCSRADVFNSKOLTMVEKRM 291
II	MKFLTFCLEYEQHPDEYQAFRQCSFSEYLKTKKLTPNLQHFVLHSIAMTSESSCTTIDG 356 MKFLTFC+EYE+HPDEY+A+ +FSEYLKT+KLTPNLQ+FVLHSIAMTSE++ T+DG MKFLTFCVEYEEHPDEYRAYEGTTFSEYLKTOKLTPNLQYFVLHSIAMTSETTSCTVDG 351
Query: 357 L	NATKNFLQCLGRFGNTPFLFPLYGQGEIPQGFCRMCAVFGGIYCLRHKVQCFVVDKESG 416
	, ATK FLQCLGR+GNTPFLFPLYGQGE+PQ FCRMCAVFGGIYCLRH VQC VVDKES KATKKFLQCLGRYGNTPFLFPLYGQGELPQCFCRMCAVFGGIYCLRHSVQCLVVDKESR 411
	CKAIIDHFGQRINAKYFIVEDSYLSEETCSNVQYKQISRAVLITDQSILKTDLDQQTSI 476 CKA+ID FGQRI +K+FI+EDSYLSE TCS VQY+QISRAVLITD S+LKTD DQQ SI
	CKAVIDQFGQRIISKHFIIEDSYLSENTCSRVQYRQISRAVLITDGSVLKTDADQQVSI 471
	IVPPAEPGACAVRVTELCSSTMTCMKDTYLVHLTCSSSKTAREDLESVVKKLFTPYTET 536 VP EPG+ VRV ELCSSTMTCMK TYLVHLTC SSKTAREDLE VV+KLFTPYTE
	AVPABEPGSFGVRVIELCS5TMTCMKGTYLVHLTCMSSKTAREDLERVVQKLFTPYTEI 531
E	INEEELTKPRLLWALYFNMRDSSGISRSSYNGLPSNVYVCSGPDCGLGNEHAVKQAETL 596 E++ KPRLLWALYFNMRDSS ISR YN LPSNVYVCSGPD GLGN++AVKQAETL
-	AENEQVEKPRLIWALYFNMRDSSDISRDCYNDLPSNVYVCSGPDSGLGNDNAVKQAETL 591
F	QXXXXXXXXXXXXXXXXDGDDKQPEAP 628 Q DGD Q E P QQICPNEDFCPAPPNPEDIVLDGDSSQQEVP 623

Pairwise alignment result of human beta globin and myoglobin

CAP5510/CGS5166

Pairwise alignment result of human beta globin and myoglobin: the score is a sum of match, mismatch, gap creation, and gap

extension scores

			-		.015, Method: Composition-based stats. = 12/24 (50%), Gaps = 2/24 (8%)
Query 12	VTALW	GKVNVD-	EVGGEAI	GRLL	33
	V +W(GKV D	GEI	RL	
Sbjct 11	VLNVW	GKVEADI	I PGHGQEVI	IRLF	34
match	4 11	56	654	15	sum of matches: +60
	(64		4	
mismatch	-1 1	0	-2 -2 -	4 0	sum of mismatches: -13
	-2	0	-3 0		
gap open		-1	11		sum of gap penalties: -12
gap extend		-	-1		\frown
					total raw score: 60 - 13 - 12 = 35

Slide: Courtesy J. Pevsner

Pairwise alignment result of human beta globin and myoglobin: the score is a sum of match, mismatch, gap creation, and gap

extension scores

Score = 18.1 bits (35), Expect = 0.015, Method: Composition-based stats. Identities = 11/24 (45%), Positives = 12/24 (50%), Gaps = 2/24 (8%) Query 12 VTALWGKVNVD--EVGGEALGRLL 33 GELRL V +WGKV D Sbjct 11 VLNVWGKVEADIPGHGQEVLIRLF 34 match 4 11 5 6545 sum of matches: +60 6 64 4 mismatch -1 1 -2 -2 -4 sum of mismatches: -13 0 0 -2 0 0 -11 sum of gap penalties: -12 gap open -1 gap extend total raw score: 60 - 13 - 12 = 35

V matching V earns +4 T matching L earns -1

These scores come from a "scoring matrix"!

Slide: Courtesy J. Peysner Page 53

CAP5510/CGS5166

Bit Score

If S is the (raw) score for a local alignment, the normalized score S' (in bits) is given by

$$S' = \frac{\lambda S - \ln(K)}{\ln(2)}$$

The parameters K and λ depend on the scoring system.

Expect value or E-value

- E-value is not a probability, but describes strength of random background noise.
- E-value describes number of hits one can "expect" to see by chance when searching a database of a particular size.
- □ It decreases exponentially with the score (S).
- E-value = 1 means "in a database of current size, one might expect to see one match with a similar score simply by chance. Lower E-value mean more "significant" match.
- WARNING: Short sequences can be virtually identical and have relatively high E-values.
 - Calculation of E-value takes into account length of query sequence. Since shorter sequences have a high probability of occurring in the database purely by chance, E-values can be high.

BLAST Tutorial

http://www.ncbi.nlm.nih.gov/books/NBK21097/#A614

Rules of Thumb

- Most sequences with significant similarity over their entire lengths are homologous.
- Matches that are > 50% identical in a 20-40 as region occur frequently by chance.
- Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
- \Box A homologous to B & B to C \Rightarrow A homologous to C.
- Low complexity regions, transmembrane regions and coiled-coil regions frequently display significant similarity without homology.
- Greater evolutionary distance implies that length of a local alignment required to achieve a statistically significant score also increases.

Rules of Thumb

- Results of searches using different scoring systems may be compared directly using normalized scores.
- □ If S is the (raw) score for a local alignment, the **normalized** score S' (in bits) is given by

 $S' = \frac{\lambda S - \ln(K)}{\ln(2)}$ The parameters depend on the scoring system.

Statistically significant normalized score,

$$S' > \log\left(\frac{N}{E}\right)$$

where E-value = E, and N = size of search space.

Assessing whether proteins are homologous

```
>gi|4505583|ref|NP 002562.1| progestagen-associated endometrial protein (placental protein 14,
          pregnancy-associated endometrial alpha-2-globulin, alpha
          uterine protein); Progestagen-associated endometrial
          protein (placental protein 14) [Homo sapiens]
gi | 190215 | gb | AAA60147.1 | (J04129) placental protein 14 [Homo sapiens]
         Length = 162
Score = 32.0 bits (71), Expect = 0.49
Identities = 26/107 (24%), Positives = 48/107 (44%), Gaps = 11/107 (10%)
Query: 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84
          + K++ + + +GTU++MA
                                   + L
                                         + A
                                               V T +
                                                                +L+ U+
Sbjct: 5 QTKQDLELPKLAGTWHSMAMAT-NNISLMATLKAPLRVHITSLLPTPEDNLEIVLHRWEN 63
Querv: 85 -VCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTY 130
            C +
                      T +P KFK+ Y VA
                                            ++ ++DTDYD +
Sbict: 64
          NSCVEKKVLGEKTGNPKKFKINY-TVA----NEATLLDTDYDNF 102
```

RBP4 and PAEP:

Low bit score, E value 0.49, 24% identity ("twilight zone"). But they are indeed homologous. Try a BLAST search with PAEP as a query, and find many other lipocalins.

Difficulties with BLAST

Use human beta globin as a query against human RefSeq proteins, and blastp does not "find" human myoglobin. This is because the two proteins are too distantly related. PSI-BLAST at NCBI as well as hidden Markov models easily solve this problem.

How can we search using 10,000 base pairs as a query, or even millions of base pairs? Many BLAST-like tools for genomic DNA are available such as PatternHunter, Megablast, BLAT, and BLASTZ.

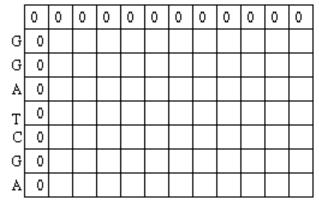
Related Tools

Megablast For long, closely-related sequences Uses large w and is very fast BLAT UCSC tool DB broken into words; query is searched PatternHunter Generalized seeds used instead of words BLASTZ, Lagan, SSAHA

Global Alignment: An example

V: G A A T T C A G T T A W: G G A T C G A

Given


δ[I, J] = Score of Matching the Ith character of sequence V & the Jth character of sequence W

Compute

S[I, J] = Score of Matching
 First I characters of sequence V &
 First J characters of sequence W

CAPSSID/CGS5166

GAATTCAGTTA

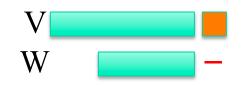
Match/Mismatch score

 $\label{eq:rence} \begin{array}{l} \mbox{Recurrence Relation} \\ \mbox{S[I, J] = MAXIMUM {} \\ \mbox{S[I-1, J-1] + } \delta(V[I], W[J]), \\ \mbox{S[I-1, J] + } \delta(V[I], -), \\ \mbox{S[I, J-1] + } \delta(-, W[J]) \end{array} \right.$

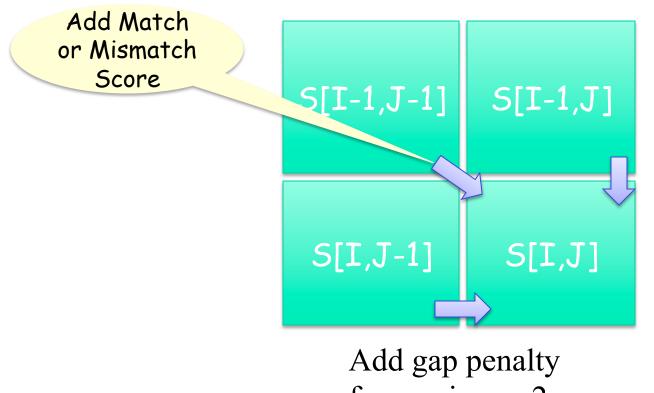
Gap Penalty

What happens with last character(s)?

1. Last characters MATCH



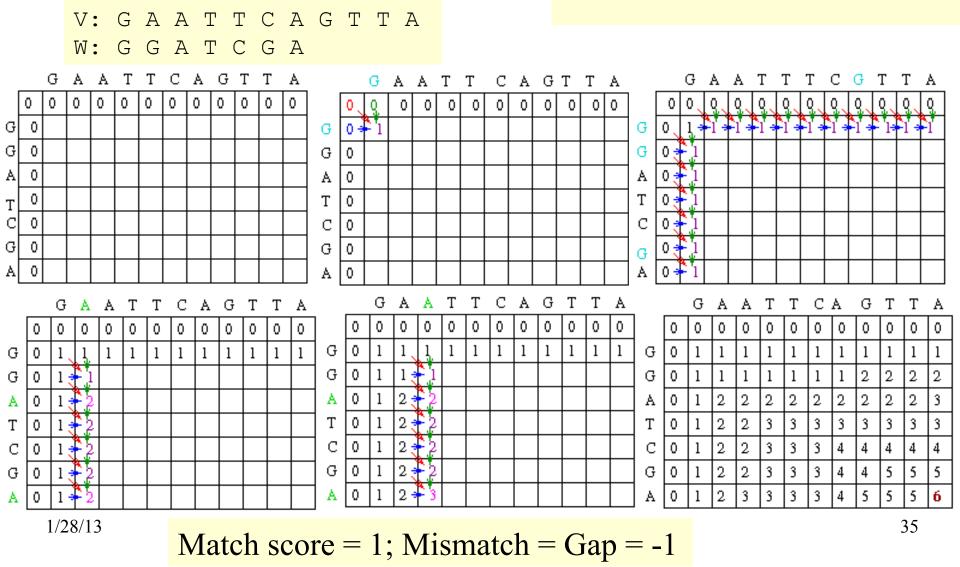
2. Last characters **MISMATCH**



3. Last character of W aligned with GAP

4. Last character of V aligned with GAP

How to fill in the matrix?



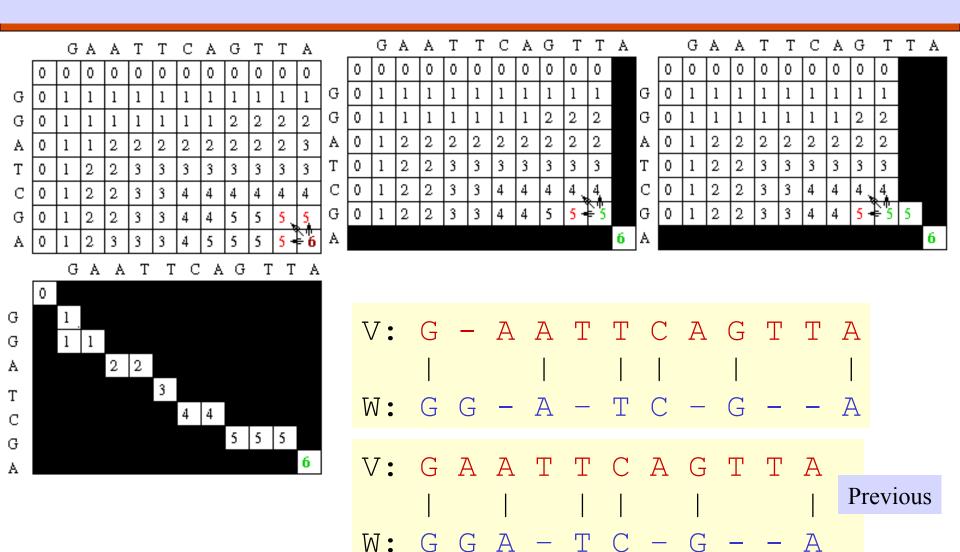
Add gap penalty for gap in seq 1

for gap in seq 2

Global Alignment: An example

 $S[I, J] = MAXIMUM {$ $S[I-1, J-1] + \delta(V[I], W[J]),$ $S[I-1, J] + \delta(V[I], ---),$ $S[I, J-1] + \delta(---, W[J]) }$

Traceback


S[I, J] = MAXIMUM { S[I-1, J-1] + δ(V[I], W[J]), $S[I-1, J] + \delta(V[I], -),$ $S[I, J-1] + \delta(-, W[J])$

		G	A	A	Т	Т	С	А	G	Т	Т	A			G	A	A	Т	Т	С	А	G	Т	Т	A			G	A	A	Т	Т	С	A	G	Т	Τ.	A
	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0		
G	0	1	1	1	1	1	1	1	1	1	1	1	G	0	1	1	1	1	1	1	1	1	1	1		G	0	1	1	1	1	1	1	1	1	1		
G	0	1	1	1	1	1	1	1	2	2	2	2	G	0	1	1	1	1	1	1	1	2	2	2		G	0	1	1	1	1	1	1	1	2	2		
Α	0	1	1	2	2	2	2	2	2	2	2	3	A	0	1	2	2	2	2	2	2	2	2	2		A	0	1	2	2	2	2	2	2	2	2		
Т	0	1	2	2	3	3	3	3	3	3	3	3	Т	0	1	2	2	3	3	3	3	3	3	3		Т	0	1	2	2	3	3	3	3	3	3		
С	0	1	2	2	3	3	4	4	4	4	4	4	С	0	1	2	2	3	3	4	4	4	4,	4		С	0	1	2	2	3	3	4	4	4,	4		
G	0	1	2	2	3	3	4	4	5	5	5	5	G	0	1	2	2	3	3	4	4	5	5	<u>с</u>		G	0	1	2	2	3	3	4	4	5	μ <u>5</u>	5	
Α	0	1	2	3	3	3	4	5	5	5	5	- 6	A												6	A											(6
		G	A	A	T	T	' C	: A	G	T	Т Т	A																										
	0																																					
G		1													т	τ.		\overline{C}	7	`	7\	ſ	т		1	$\overline{\mathbf{C}}$	7	۱	C			п	1	7				
G			1												\	/:		G	F	7	А	•	T.	Τ		C	F	7	G		T.	.T		А				
А				2	2																			1										1				
Т						3									Ŧ	-				_	_													_				
C							4	4							V	۷:		G	(Ċ	A		_	Τ		С	_	-	G		_		•	А				
G									5	5	5																											

А

6

Alternative Traceback

Improved Traceback

		G	A	A	Т	Т	С	A	G	Т	Т	A
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	×1	←1	~ 1	~ 1	← 1	← 1	← 1	×1	← 1	← 1	← 1
G	0	×1	1	1	↑1	↑1	↑1	1	×2	← 2	← 2	← 2
A	0	1	1	×2	~ 2	~ 2	← 2	×2	12	<u></u> ↑2	<u></u> ↑2	×3
Т	0	1	~ 2	<u></u> ↑2	×3	×3	← 3	← 3	← 3	×3	×3	∱3
С	0	1	∱2	<u></u> ↑2	∱3	∱3	×4	~ 4	~ 4	~ 4	~ 4	← 4
G	0	↑1	<u></u> ↑2	<u></u> ↑2	^ 3	∱3	∱4	<u></u> ↑4	×5	- 5	ნ ს	← 5
A	0	↑1	15	×3	∱3	∱3	<u></u> ↑4	×5	↑5	<u>↑</u> 5	15	×6

1/28/13

Improved Traceback

		G	A	A	Т	Т	С	A	G	Т	Т	A
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	×1	←1	← 1	~ 1	← 1	← 1	← 1	×1	← 1	← 1	← 1
G	0	×1	↑1	↑1	↑1	↑1	↑1	↑1	×2	← 2	<mark>←</mark> 2	<mark>←</mark> 2
A	0	↑1	↑1	×2	<mark>←</mark> 2	~ 2	<u>←</u> 2	×2	<u></u> ↑2	<u></u> ↑2	<u></u> ↑2	×3
Т	0	↑1	← 2	<u></u> ↑2	×3	×3	← 3	← 3	← 3	×3	×3	∱3
С	0	↑1	∱2	<u></u> ↑2	∱3	∱3	×4	~ 4	~ 4	~ 4	« 4	← 4
G	0	1	12	<u></u> ↑2	∱3	∱3	↑4	↑4	×5	~ 5	~ 5	← 5
A	0	↑1	15	×3	∱3	∱3	<u></u> ↑4	×5	15	<u>↑</u> 5	15	×6
I												

1/28/13

Improved Traceback

		G	A	A	Т	Т	С	A	G	Т	Т	A
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	×1	←1	~ 1	~ 1	~ 1	~ 1	~ 1	×1	~ 1	~ 1	← 1
G	0	×1	1	↑1	↑1	↑1	↑1	↑1	×2	← 2	← 2	← 2
A	0	↑1	1	×2	← 2	~ 2	<mark>←</mark> 2	×2	<u></u> ↑2	<u></u> ↑2	<u></u> ↑2	×3
Т	0	↑1	← 2	<u></u> ↑2	×3	×3	← 3	← 3	← 3	×3	×3	13
С	0	↑1	∱2	<u></u> ↑2	∱3	∱3	×4	~ 4				
G	0	1	15	15	∱3	∱3	<u></u> ↑4	<u></u> ↑4	×5	~ 5	~ 5	~ 5
Α	0	↑1	<u></u> ↑2	×3	∱3	<u></u> ↑3	↑4	×5	15	15	15	×6
			V:	GΑ	- A	Т Т	СА	GΊ	. T 2	7		
1/2	8/13		W:	 G –	l G A	 - T	 C -	 G -	7	7		40

Subproblems

- Optimally align V[1..I] and W[1..J] for every possible values of I and J.
- Having optimally aligned
 - V[1..I-1] and W[1..J-1]
 - V[1..I] and W[1..J-1]
 - V[1..I-1] and W[1, J]

it is possible to optimally align V[1..I] and W[1..J]

```
□ O(mn),
```

```
where m = length of V,
and n = length of W.
```

Generalizations of Similarity Function

- \Box Mismatch Penalty = α
- **Spaces** (Insertions/Deletions, InDels) = β
- □ Affine Gap Penalties:
 - (Gap open, Gap extension) = (γ, δ)
- \Box Weighted Mismatch = $\Phi(a,b)$
- \Box Weighted Matches = $\Omega(a)$

Alternative Scoring Schemes

		G	A	A	Т	Т	С	A	G	Т	Т	A
	0	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12
G	-2	× 1	← -1	<mark>←</mark> -2	<mark>←</mark> -3	<mark>←</mark> -4	~ -5	← -6	~ -7	 8	~ -9	← -10
G	-3	<u>↑</u> -1	× -1	<mark>←</mark> -3	<mark>←</mark> -4	~ -5	← - 6	<mark>←</mark> -7	× -5	<mark>←</mark> -7	<mark>← -</mark> 8	← -9
A	-4	1-2	× 0	× 0	<mark>←</mark> -2	<mark>←</mark> -3	~ -4	~ -5	 6	<mark>←</mark> -7	~ -8	× -7
Т	-5	1-3	<u></u> ^ -2	^-2	× 1	← -1	<mark>←</mark> -2	<mark>←</mark> -3	~ -4	<mark>←</mark> -5	← - 6	← - 7
С	-6	1-4	↑ -3	∱-3	<u>↑</u> -1	× -1	× 0	<mark>←</mark> -2	<mark>←</mark> -3	<mark>←</mark> -4	~ -5	← -6
G	-7	1-5	<u></u> ↑-4	∱-4	^-2	∱-3	^-2	× -2	× -1	<mark>←</mark> -3	~ -4	← -5
A	-8	1-6	1-5	1-5	∱-3	<u>↑</u> -4	^-3	× -1	^-3	× -3	× -5	× -3
Match +1 Mismatch – Gap (-2, -1)		V: W:	G A I G G	A T A T	T C - C	A G - G	тт	A I A				

Local Sequence Alignment

Example: comparing long stretches of anonymous DNA; aligning proteins that share only some motifs or domains.

Smith-Waterman Algorithm

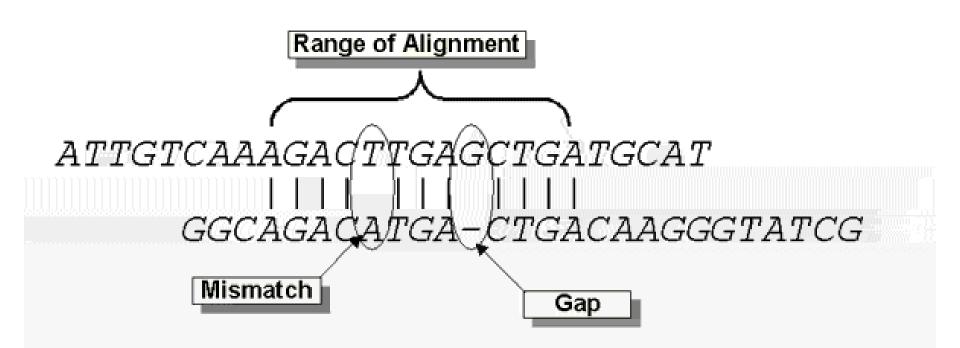
Recurrence Relations (Global vs Local Alignments)

□ $S[I, J] = MAXIMUM \{$ $S[I-1, J-1] + \delta(V[I], W[J]),$ $S[I-1, J] + \delta(V[I], --),$ $S[I, J-1] + \delta(-, W[J]) \}$

Global Alignment

$\Box S[I, J] = MAXIMUM \{ 0, \\ S[I-1, J-1] + \delta(V[I], W[J]), \\ S[I-1, J] + \delta(V[I], -), \\ S[I, J-1] + \delta(-, W[J]) \}$

Local Alignment


Local Alignment: Example

		G	Α	Α	Т	Т	С	Α	G	Т	Т	A
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	× 1	0	0	0	0	0	0	0	0	0	0
G	0	× 1	← 0	0	0	0	0	0	× 1	0	0	0
A	0	0	× 2	× 1	0	0	0	× 1	0	0	0	× 1
Т	0	0	↑ O	× 1	× 2	← 1	0	0	0	× 1	× 1	0
С	0	0	0	0	↑ O	× 0	× 2	0	0	0	0	0
G	0	0	0	0	0	0	0	0	× 1	0	0	0
Α	0	0	× 1	× 1	0	0	0	× 1	0	0	0	× 1
Match +1 Mismatch – Gap (-1, -1)		V: W:	– G G G	A A - A	ТТ Т-	C A C –	G Т G —	Т А - А				

How to find all regions of "high similarity"? Find all entries above a threshold score and traceback. □ What if: Matches = 1 & Mismatches/spaces = 0? Longest Common Subsequence Problem \Box What if: Matches = 1 & Mismatches/spaces = $-\infty$? Longest Common Substring Problem □ What if the average entry is positive? Global Alignment

Slide: Courtesy J. Pevsner

Calculation of an alignment score

S= Σ (identities, mismatches) - Σ (gap penalties)

Score =
$$Max(S)$$

1/28/13

Source: http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Alignment_Scores2.html

CAP5510/CGS5166

How to score mismatches?

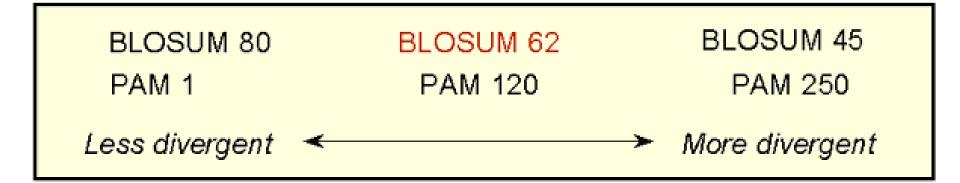
Α	4]								R		211	mf	52	er	or	inc	n n	naf	rix
R	-1	5										54			30			,	I a u	
Ν	-2	0	6																	
D	-2	-2	1	6																
С	0	-3	-3	-3	9															
Q	-1	1	0	0	-3	5														
Ε	-1	0	0	2	-4	2	5						2	Slid	e: (Cou	rtes	sy J	.Pe	evsner
G	0	-2	0	-1	-3	-2	-2	6										•		
Η	-2	0	1	-1	-3	0	0	-2	8											
Ι	-1	-3	-3	-3	-1	-3	-3	-4	-3	4										
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4									
K	-1	2	0	-1	-1	1	1	-2	-1	-3	-2	5								
Μ	-1	-2	-2	-3	-1	0	-2	-3	-2	1	2	-1	5							
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6						
Р	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7					
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4				
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5			
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11		
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
	Α	R	Ν	D	С	Q	Ε	G	Η	Ι	L	K	Μ	F	Р	S	Т	W	Y	V
1/28/	/13							(CAP5	510/C	GS51	.66							Pa	age 73

BLOSUM n Substitution Matrices

For each amino acid pair a, b For each BLOCK Align all proteins in the BLOCK Eliminate proteins that are more than n% identical Count F(a), F(b), F(a,b) Compute Log-odds Ratio

$$\log\!\left(\frac{F(a,b)}{F(a)F(b)}\right)$$

Scoring Matrix to Use


- PAM 40
- □ PAM 160
- □ PAM 250

BLOSUM90BLOSUM80

- BLOSUM62
- BLOSUM30

Short alignments with high similarity (70-90%) Members of a protein family (50-60%) Longer alignments (divergent sequences) (~30%)

Short alignments with high similarity (70-90%) Members of a protein family (50-60%) Finding all potential hits (30-40%) Longer alignments (divergent sequences) (<30%)

Slide: Courtesy J. Pevsner

CAP5510/CGS5166

Local/Standalone BLAST

- Go to: ftp://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/
- Right click on a desired archive and select "Save link as..." from the popup menu
- In the prompt, switch to a desired directory (folder) and click the "Save" button to save the archive to a desired location on the local disk
- Installation details are at:
 - Windows: http://www.ncbi.nlm.nih.gov/books/NBK52637/
 - Unix: http://www.ncbi.nlm.nih.gov/books/NBK52640/
 - Help: http://www.ncbi.nlm.nih.gov/books/NBK1762/
- With the help of this installation, you can run BLAST with preformatted databases or format your own database before you run BLAST queries.

Multiple Sequence Alignment

Multiple Alignments

🛛 Global

- ClustalW, ClustalX
- MSA
- T-Coffee
- Local
 - BLOCKS
 - eMOTIF
 - GIBBS
 - HMMER
 - MACAW
 - MEME
- Other
 - Profile Analysis from msa (UCSD)
 - SAM HMM (from msa)

MSA of glyceraldehyde 3-phosphate dehydrogenases: example of high conservation

fly GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA human GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA plant GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA yeast GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA archaeon GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA

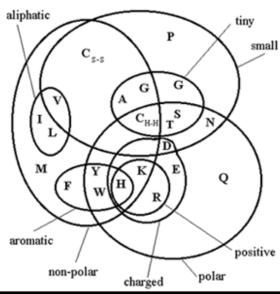
flyKVINDNFEIVEGLMTTVHATTATQKTVDGPSGKLWRDGRGAAQNIIPASThumanKVIHDNFGIVEGLMTTVHAITATQKTVDGPSGKLWRDGRGALQNIIPASTplantKVVHEEFGILEGLMTTVHATTATQKTVDGPSMKDWRGGRGASQNIIPSSTbacteriumKVINDNFGIIEGLMTTVHATTATQKTVDGPSHKDWRGGRGASQNIIPSSTyeastKVINDAFGIEEGLMTTVHSLTATQKTVDGPSHKDWRGGRTASGNIIPSSTarchaeonKVLDEEFGINAGQLTTVHAYTGSQNLMDGPNGKP.RRRRAAAENIIPTST

flyGAAKAVGKVIPALNGKLTGMAFRVPTPNVSVVDLTVRLGKGASYDEIKAKhumanGAAKAVGKVIPELNGKLTGMAFRVPTANVSVVDLTCRLEKPAKYDDIKKVplantGAAKAVGKVLPELNGKLTGMAFRVPTSNVSVVDLTCRLEKGASYEDVKAAbacteriumGAAKAVGKVLPELNGKLTGMAFRVPTPNVSVVDLTVRLEKAATYEQIKAAyeastGAAKAVGKVLPELQGKLTGMAFRVPTVDVSVVDLTVKLNKETTYDEIKKVarchaeonGAAQAATEVLPELEGKLDGMAIRVPVPNGSITEFVVDLDDDVTESDVNAA

CAP5510/CGS5166

Slide: Courtesy J. Pevsner

56


Page 57

Multiple Alignments: CLUSTALW

identical

- : conserved substitutions
- semi-conserved substitutions

gi	2213819	CDN-ELKSEAIIEHLCASEFALRMKIKEVKKENGDKK	223
gi	12656123	ELKSEAIIEHLCASEFALRMKIKEVKKENGD-	31
gi	7512442	CKNKNDDDNDIMETLCKNDFALKIKVKEITYINRDTK	211
gi	1344282	eq:QDECKFDYVEVYETSSSGAFSLLGRFCGAEPPPHLVSSHHELAVLFRTDH	400
		: . : * *:* . :*:	
Red:		AVFPMLW (Small & hydrophobic)	
Blue:		DE (Acidic)	
Mage	nta:	RHK (Basic)	
Greer	า:	STYHCNGQ (Hydroxyl, Amine, Basic)	
Gray:		Others	

Multiple Alignment

A. Estimate the amino acid frequencies in the motif columns of all but one sequence. Also obtain background.

	Motif
	Ŧ
XXXMXXXXX	XXXMXXXXX
XXXXXXMXX	XXXXXXMXX
XXXXXMXXX	XXXXXMXXX
xMxxxxxxx	xMxxxxxxx
XXXXXXXXX	XXXXXXXXX
Mxxxxxxxx	Mxxxxxxxx
XXXXMXXXX	XXXXMXXXX
XMXXXXXXX	xMxxxxxxx
XXXXXXXM	XXXXXXXM
Random start	Location of motif in each sequence
positions chosen	provides first estimate of motif composition

How to Score Multiple Alignments?

Sum of Pairs Score (SP)

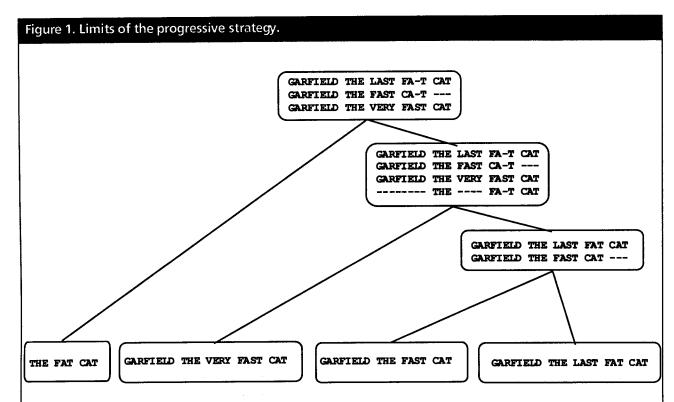
- Optimal alignment: O(d^N) [Dynamic Prog]
- Approximate Algorithm: Approx Ratio 2
 - Locate Center: O(d²N²)
 - Locate Consensus: O(d²N²)
- Consensus char: char with min distance sum
- Consensus string: string of consensus char
- Center: input string with min distance sum

Multiple Alignment Methods

- Phylogenetic Tree Alignment (NP-Complete)
 - Given tree, task is to label leaves with strings
- Iterative Method(s)
 - Build a MST using the distance function
- Clustering Methods
 - Hierarchical Clustering
 - K-Means Clustering

Multiple Alignment Methods (Cont'd)

Gibbs Sampling Method


- Lawrence, Altschul, Boguski, Liu, Neuwald, Winton, Science, 1993
- Hidden Markov Model
 - Krogh, Brown, Mian, Sjolander, Haussler, JMB, 1994

Multiple Sequence Alignments (MSA)

Choice of Scoring Function

- Global vs local
- Gap penalties
- Substitution matrices
- Incorporating other information
- Statistical Significance
- Computational Issues
 - Exact/heuristic/approximate algorithms for optimal MSA
 - Progressive/Iterative/DP
 - Iterative: Stochastic/Non-stochastic/Consistency-based
- Evaluating MSAs
 - Choice of good test sets or benchmarks (BAliBASE)
 - How to decide thresholds for good/bad alignments

Progressive MSA: CLUSTALW

This example shows how a progressive alignment strategy can be misled. In the initial alignment of sequences 1 and 2, ClustalW has a choice between aligning CAT with CAT and making an internal gap or making a mismatch between C and F and having a terminal gap. Since terminal gaps are much cheaper than internals, the ClustalW scoring schemes prefers the former. In the next stage, when the extra sequence is added, it turns out that properly aligning the two CATs in the previous stage would have led to a better scori ng sums-of-pairs multiple alignment.

Software for MSA

<i>I</i> ISA	Exact	http://www.ibc.wustl.edu/ibc/msa.html	[28]
MA	Iterative DCA	http://bibiserv.techfak.uni-biefield.de/oma	[61]
MultAlin	Progressive	http://www.toulouse.inra.fr/multalin.html	[41]
ComAlign	Consistency-based	http://www.daimi.au.df/~ ocaprani	[75]
raline	Iterative/progressive	jhering@nimr.mrc.ac.uk	[48]
i enas é de la			
qnγ	Iterative/Stochastic	ftp://ftp.genome.ad.jp/pub/genome/saitama-cc/	[47]
HMMER	Iterative/Stochastic/HMM	http://hmmer.wustl.edu/	[68]
GA	Iterative/Stochastic/GA	czhang@watnow.uwaterloo.ca	[52]

C. Notredame, Pharmacogenomics, 3(1), 2002.

MSA: Conclusions

- Very important
 - Phylogenetic analyses
 - Identify members of a family
 - Protein structure prediction
- No perfect methods
- Popular
 - Progressive methods: CLUSTALW
 - Recent interesting ones: Prrp, SAGA, DiAlign, T-Coffee
- Review of Methods [C. Notredame, Pharmacogenomics, 3(1), 2002]
 - CLUSTALW works reasonably well, in general
 - DiAlign is better for sequences with long insertions & deletions (indels)
 - T-Coffee is best available method