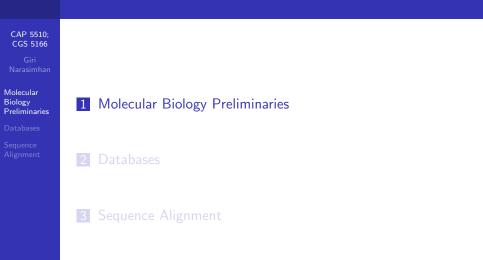
CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie

Databases

Sequence Alignment

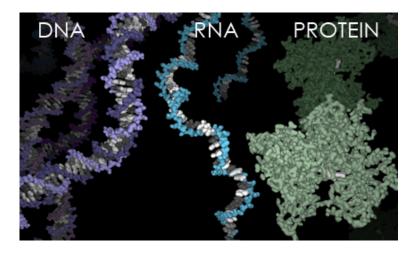

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

Giri Narasimhan

ECS 254A / EC 2474; Phone x3748; Email: giri@cis.fiu.edu
 My Homepage: http://www.cs.fiu.edu/~giri
 http://www.cs.fiu.edu/~giri/teach/BioinfS15.html
 Office ECS 254 (and EC 2474); Phone: x-3748
 Office Hours: By Appointment Only

Jan 19, 2015

Presentation Outline


The drama of Molecular Biology ... the actors

CAP 5510; CGS 5166 Giri Narasimhan

Molecular Biology Preliminaries

Databases

Sequence Alignment

http://exploringorigins.org/images/centralDogma.jpg

The Polymeric Players

CAP 5510; CGS 5166				
Giri Narasimhan				
Molecular Biology Preliminaries		Molecule	Unit Name	Unit Composition
	-	DNA	Nucleotide	A, C, G, T
Databases			or Base	
Sequence Alignment				1

The Polymeric Players

CAP 5510; CGS 5166 Giri Narasimhan			
Molecular Biology	Molecule	Unit Name	Unit Composition
Preliminaries	DNA	Nucleotide	A, C, G, T
Databases		or Base	
Sequence Alignment	RNA	Nucleotide	A, C, G, U
		or Base	
			<u>.</u>

The Polymeric Players

M Bi Pr

CAP 5510; CGS 5166			
Aolecular Biology	Molecule	Unit Name	Unit Composition
Preliminaries	DNA	Nucleotide	A, C, G, T
		or Base	
	RNA	Nucleotide	A, C, G, U
		or Base	
	Protein	Amino acid	amino acids represented
		residue	by 20-letter alphabet
			missing {B, J, O, U, X, Z}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Typical DNA Sequence

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminaries

Databases

Sequence Alignment

1	gggagaacac	ccggagaagg	aggaggaggc	gaagaaaagc	aacagaagcc	cagttgctgc
61	tccaggtccc	tcggacagag	ctttttccat	gtggagactc	tctcaatgga	cgtgcccct
121	agtgcttctt	agacggactg	cggtctccta	aaggtcgacc	atggtggccg	ggacccgctg
181	tcttctagtg	ttgctgcttc	cccaggtcct	cctgggcggc	gcggccggcc	tcattccaga
241	gctgggccgc	aagaagttcg	ccgcggcatc	cagccgaccc	ttgtcccggc	cttcggaaga
301	cgtcctcagc	gaatttgagt	tgaggctgct	cagcatgttt	ggcctgaagc	agagacccac
361	ccccagcaag	gacgtcgtgg	tgcccccta	tatgctagat	ctgtaccgca	ggcactcagg
421	ccagccagga	gcgcccgccc	cagaccaccg	gctggagagg	gcagccagcc	gcgccaacac
481	cgtgcgcagc	ttccatcacg	aagaagccgt	ggaggaactt	ccagagatga	gtgggaaaac
541	ggcccggcgc	ttcttcttca	atttaagttc	tgtccccagt	gacgagtttc	tcacatctgc
601	agaactccag	atcttccggg	aacagataca	ggaagctttg	ggaaacagta	gtttccagca
661	ccgaattaat	atttatgaaa	ttataaagcc	tgcagcagcc	aacttgaaat	ttcctgtgac
721	cagactattg	gacaccaggt	tagtgaatca	gaacacaagt	cagtgggaga	gcttcgacgt
781	caccccagct	gtgatgcggt	ggaccacaca	gggacacacc	aaccatgggt	ttgtggtgga
841	agtggcccat	ttagaggaga	acccaggtgt	ctccaagaga	catgtgagga	ttagcaggtc
901	tttgcaccaa	gatgaacaca	gctggtcaca	gataaggcca	ttgctagtga	cttttggaca
961	tgatggaaaa	ggacatccgc	tccacaaacg	agaaaagcgt	caagccaaac	acaaacagcg

Building Blocks of DNA & RNA

Databases

Sequence Alignment

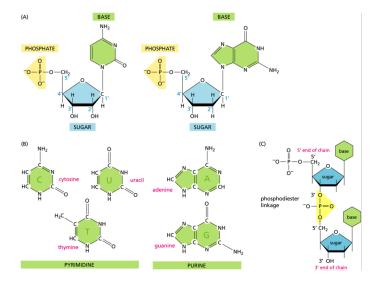


Fig. 1.1, Zvelebil & Baum $_{\sim}$

DNA – Double Helix Structure

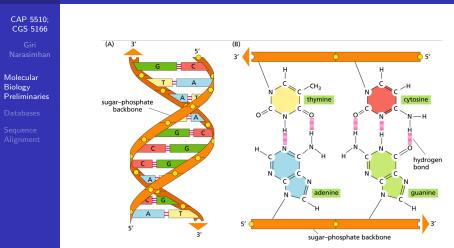
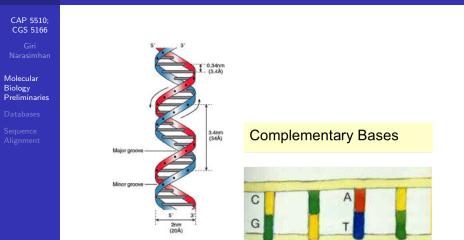



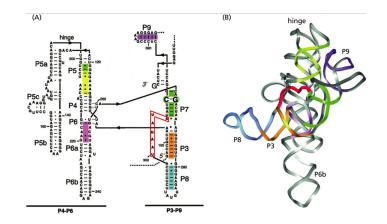
Fig 1.3, Zvelebil & Baum

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

DNA Molecule

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

From http://www.cellsalive.com/cells/cell_model.htm


RNA Molecule

Molecular Biology Preliminaries

Databases

Sequence Alignment

Fig 1.5, Zvelebil & Baum

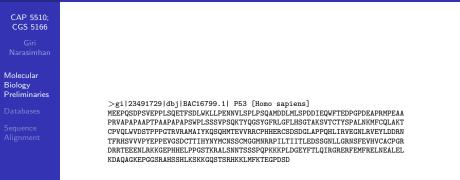
э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Protein - The 20 Amino Acids

CAP 5510; CGS 5166

Giri Narasimhan


Molecular Biology Preliminaries

Databases

Sequence Alignment

Le	tter	3 Letter	Amino	Letter	3 Letter	Amino
Co	ode	Code	Acid	Code	Code	Acid
	A	Ala	Alanine	M	Met	Methionine
	С	Cys	Cysteine	N	Asn	Asparagine
	D	Asp	Aspartic	Р	Pro	Proline
			Acid			
	E	Glu	Glutamic	Q	Gla	Glutamine
			Acid			
	F	Phe	Phenylalanine	R	Arg	Arginine
	G	Gly	Glycine	S	Ser	Serine
	Н	His	Histidine	Т	Thr	Threonine
	I	lle	Isoleucine	V	Val	Valine
	K	Lys	Lysine	W	Trp	Trypophan
	L	Leu	Leucine	Y	Tyr	Tyrosine

Protein – Typical Sequence

Protein molecules have a 3D structure

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment

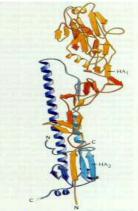
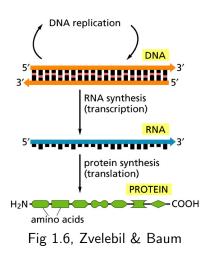


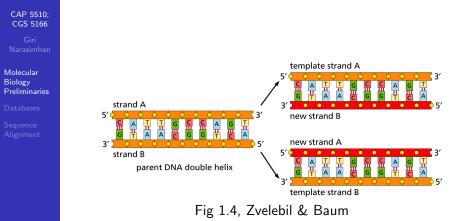
Figure 5.21 Schematic diagram of the subout structure of hemagightinin from influenza winas. The structure comprises about 550 aminoadds arranged its two channs HA, (red) and HA, and the structure comprises about 550 aminocolor in the diagram. The subsmit is very elongated with a long stemulike region built up by residues from both chains and includes one of the longest o helicus known in a globular of the longest o helicus known in a globular formed by readues only from HA. (Coursey) of Dom Wiley, Harvard University.)

(日)、

ъ


Central Dogma

Molecular Biology Preliminaries


Databases

Sequence Alignment

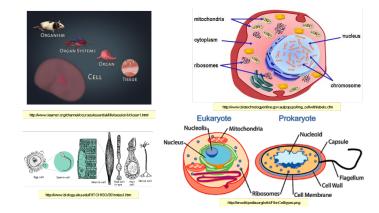
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

DNA Replication

イロト 不得 トイヨト イヨト

э.

The Cell


CAP 5510; CGS 5166 Giri

Narasimhan

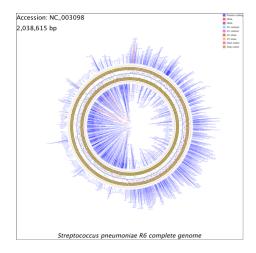
Molecular Biology Preliminaries

Databases

Sequence Alignment

From
http://www.cellsalive.com/cells/cell_model.htm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?


Bacterial Chromosomes

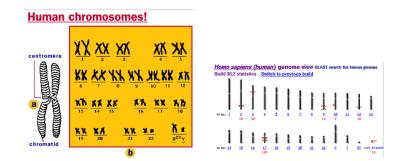
CAP 5510; CGS 5166 Giri Narasimhan

Molecular Biology Preliminaries

Databases

Sequence Alignment

From http://www.cellsalive.com/cells/cell_model.htm


Human Chromosomes

Molecular Biology Preliminaries

Databases

Sequence Alignment

From

http://www.cellsalive.com/cells/cell_model.htm

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Genes

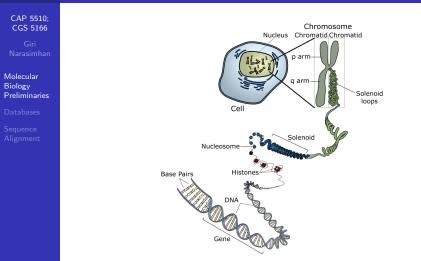
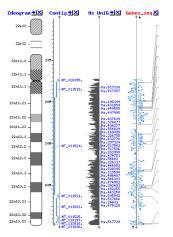
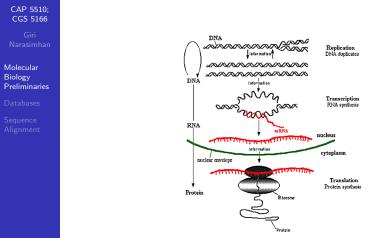



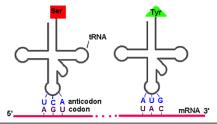
Image adapted from: National Human Genome Research Institute.

From http://www2.le.ac.uk/departments/genetics/vgec/diagrams/36chromosomeunravel.jpg_ _>


Human Chromosomes

From http://www.cellsalive.com/cells/cell_model.htm

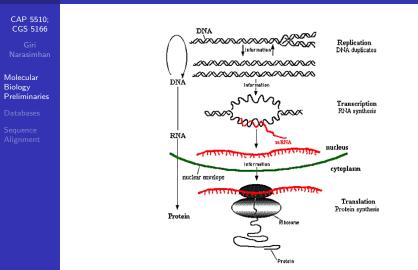
Central Dogma



The Central Dogma of Molecular Biology

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

RNA and Genetic Code



2nd base in codon							
		U	С	Α	G		
1st base in codon	U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr STOP STOP	Cys Cys <mark>STOP</mark> Trp	DCAG	3rd base
	С	Leu Leu Leu Leu	Pro Pro Pro Pro	His His Gln Gln	Arg Arg Arg Arg	UCAG	lse in codon
	A	lle lle lle Met	Thr Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	DCAG	lon
	G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu	Gly Gly Gly Gly	UCAG	

문 🛌 문

The Genetic Code

Central Dogma

The Central Dogma of Molecular Biology

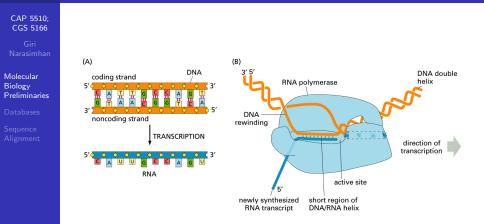
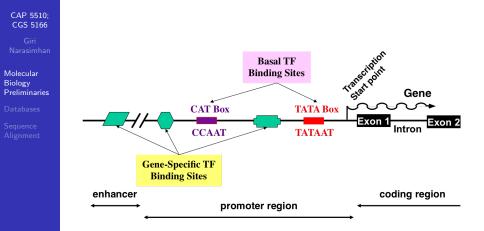



Fig 1.7, Zvelebil & Baum

3

ヘロア ヘビア ヘビア ヘビア

Courtesy: Dr. Kalai Mathee

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

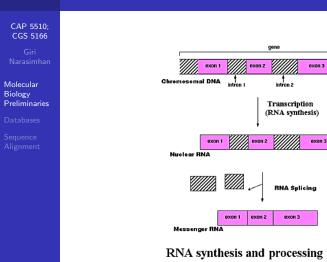
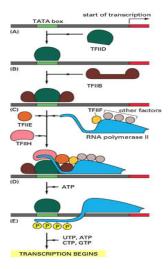
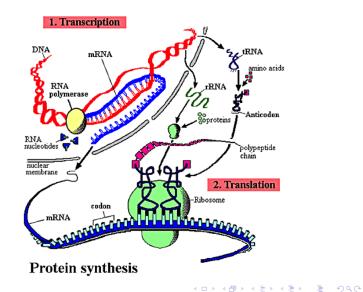



Fig 1.6, Zvelebil & Baum

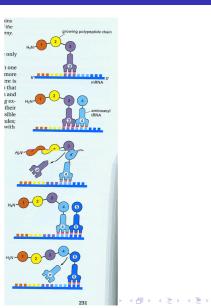


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Translation

CAP 5510: CGS 5166

Molecular Biology Preliminaries


Translation

CAP 5510;

Databases

Sequence Alignment

æ

Presentation Outline

CAP 5510; CGS 5166 Giri

Ivarasimnar

Biology Preliminaries

Databases

Sequence Alignment

1 Molecular Biology Preliminaries

2 Databases

3 Sequence Alignment

< ロ > < 昂 > < 喜 > < 喜 > 善き のので

3 Major Public Databases

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie

Databases

Sequence Alignment

GenBank

National Center for Biotechnology Information (NCBI)

- EMBL European Mol Biol Laboratory
 - European Bioinformatics Institute (EBI)
- DDBJ: DNA Data Bank of Japan
 - National Institute of Genetics (NIG)
- All 3 have been completely integrated!

Entrez Portal @ NCBI

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment

- PubMed; Bookshelf
- DNA and Protein Sequence database
- Protein Structure database
- Genome Assemblies
- BLAST
- dbSNP
- Taxonomy Browser
- Population study data sets
- PubChem
- GEO (Gene Expression Omnibus)
- OMIM (Mendelian Inheritance in Man)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

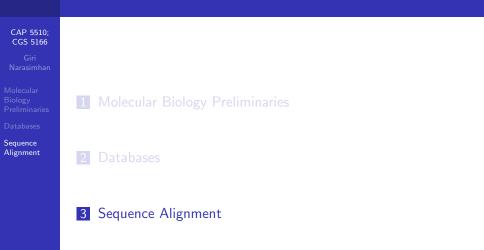
Other Important Databases

CAP 5510; CGS 5166 Giri

Giri Narasimhan

Molecular Biology Preliminarie

Databases


Sequence Alignment

- PDB http://www.wwpdb.org/
- KEGG http://www.genome.jp/kegg/
- MetaCyc http://metacyc.org
- ENCODE http://encodeproject.org/ENCODE/ (functional elements in human genome)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 1000 Genomes Project
- International HapMap Project
- Human Microbiome Project
- Human Epigenome Project
- Gene Ontology (GO)
- Human Connectome Project

Presentation Outline

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

1. Can show sequences are close

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment

rpoA [Pseudomonas aeruginosa] with rpoA [Pseudomonas fluorescence]

Query	1	MQISVNEFLTPRHIDVQVVSPTRAKITLEPLERGFGHTLGNALRRILLSSMPGCAVVEAE MQ SVNEFLTPRHIDVQVVS TRAKITLEPLERGFGHTLGNALRRILLSSMPGCAVVEAE	60
Sbjct	1	MQSSVNEFLTPRHIDVQVVSQTRAKITLEPLERGFGHTLGNALRRILLSSMPGCAVVEAE	60
Query	61	IDGVLHEYSAIEGVQEDVIEILLNLKGLAIKLHGRDEVTLTLSKKGSGVVTAADIQLDHD IDGVLHEYSAIEGVOEDVIEILLNLKGLAIKLHGRDEVTLTL+KKGSGVVTAADIQLDHD	120
Sbjct	61	IDGVLHEISAIEGVQEDVIEILLNIGLAIKLHGRDEVILIL*KKGGVVTAADIQLDHD IDGVLHEYSAIEGVQEDVIEILLNIKGLAIKLHGRDEVILTLAKKGGVVTAADIQLDHD	120
Query	121	VEIVNPDHVIANLASNGALNMKLTVARGRGYEPADSRQSDEDESRSIGRLQLDSSFSPVR VEI+N DHVIANLA NGALMMKL VARGRGYEPAD+ROSDEDESRSIGRLOLD+SFSPVR	180
Sbjct	121	VEITH DRVIARLA NGALNARL VARGRGIEFAD-RODDEDSSSIGRLOLD-SFSPVR VEIINGDHVIANLADNGALNARLKVARGRGYEPADAROSDEDESSSIGRLOLDASFSPVR	180
Query	181	RIAYVVENARVEQRTNLDKLVIDLETNGTLDPEEAIRRAATILQQQLAAFVDLKGDSEPV	240
Sbjct	181	R++YVVENARVEQRTNLDKLV+DLETNGTLDPEEAIRRAATILQQQLAAFVDLKGDSEPV RVSYVVENARVEQRTNLDKLVLDLETNGTLDPEEAIRRAATILQQQLAAFVDLKGDSEPV	240
Query	241	VIEQEDEIDPILLRPVDDLELTVRSANCLKAENIYYIGDLIQRTEVELLKTPNLGKKSLT	300
Sbjct	241	V EQEDEIDPILLRPVDDLELTVRSANCLKAENIYYIGDLIQRTEVELLKTPNLGKKSLT VEEQEDEIDPILLRPVDDLELTVRSANCLKAENIYYIGDLIQRTEVELLKTPNLGKKSLT	300
Query	301	EIKDVLASRGLSLGMRLDNWPPASLKKDDKATA 333	
Sbjct	301	EIKDVLASRGLSLGMRLDNWPPASLKKDDKATA EIKDVLASRGLSLGMRLDNWPPASLKKDDKATA 333	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2. Can show sequences have similar parts

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminarie:

Databases

Sequence Alignment Sequence 1 gi 332624 Simian sarcoma virus v-sis transforming protein p28 gene, complete cds; and 3' LTR long terminal repeat, complete sequence. Length 2984 (1 .. 2984) Sequence 2 gi 4505680 Homo sapiens platelet-derived growth factor beta polypeptide (simian sarcoma viral (v-sis) oncogene homolog) (PDGFE), transcript variant 1, mRNA Length 3373 (1 .. 3373)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

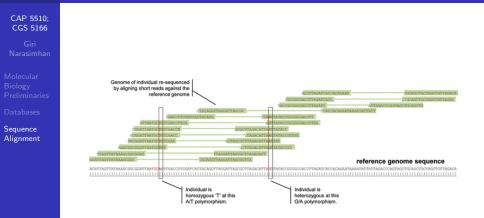
3. Can identify similar sequences from DB

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie

Databases

Sequence Alignment


V-sis Oncogene – Homologies

	Score	E
Sequences producing significant alignments:	(bits)	Value
gi 332623 gb J02396.1 SEG_SSVPCS2 Simian sarcoma virus v-si	4591	0.0
gi 61774 emb V01201.1 RESSV1 Simian sarcoma virus proviral	4504	0.0
gi 332622 gb J02395.1 SEG_SSVPCS1 Simian sarcoma virus LTR	1283	0.0
gi 885929 gb U20589.1 GLU20589 Gibbon leukemia virus envelo	1140	0.0
gi 4505680 ref NM 002608.1 Homo sapiens platelet-derived g	954	0.0
gi 20987438 gb BC029822.1 Homo sapiens, platelet-derived g	954	0.0
gi 338210 gb M12783.1 HUMSISPDG Human c-sis/platelet-derive	954	0.0

4. Can pinpoint mutations

CAP 5510; CGS 5166	
Giri Narasimhan	
Molecular Biology	
Preliminaries	870 GTGGCTGCTTCTTTGGTTGTGCTGTGGCTCCTTGGAAA
Databases	X
Sequence Alignment	870 gtggctgcttctttggttgtgctgtagctccttggaaa

5. Can help in sequence assembly

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment **Early 1970s:** SSV causes cancer in some species of monkeys.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie:

Databases

Sequence Alignment

- **Early 1970s**: SSV causes cancer in some species of monkeys.
- 1970s: infection by certain viruses cause some cells in culture (in vitro) to grow without bounds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie:

Databases

Sequence Alignment

- **Early 1970s:** SSV causes cancer in some species of monkeys.
- 1970s: infection by certain viruses cause some cells in culture (in vitro) to grow without bounds.
 - Hypothesis: Oncogenes in viruses encode cellular growth factors (proteins to stimulate growth); Uncontrolled quantities of growth factors produced by infected cells cause cancer-like behavior.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment

- **Early 1970s:** SSV causes cancer in some species of monkeys.
- 1970s: infection by certain viruses cause some cells in culture (in vitro) to grow without bounds.
 - Hypothesis: Oncogenes in viruses encode cellular growth factors (proteins to stimulate growth); Uncontrolled quantities of growth factors produced by infected cells cause cancer-like behavior.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

1983:

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment

- **Early 1970s**: SSV causes cancer in some species of monkeys.
- 1970s: infection by certain viruses cause some cells in culture (in vitro) to grow without bounds.
 - Hypothesis: Oncogenes in viruses encode cellular growth factors (proteins to stimulate growth); Uncontrolled quantities of growth factors produced by infected cells cause cancer-like behavior.

1983:

- Oncogene from SSV called v-sis isolated & sequenced.
- Partial sequence for platelet-derived growth factor (PDGF) sequenced & published; PDGF stimulates proliferation of cells.

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment

- **Early 1970s**: SSV causes cancer in some species of monkeys.
- 1970s: infection by certain viruses cause some cells in culture (in vitro) to grow without bounds.
 - Hypothesis: Oncogenes in viruses encode cellular growth factors (proteins to stimulate growth); Uncontrolled quantities of growth factors produced by infected cells cause cancer-like behavior.

1983:

- Oncogene from SSV called v-sis isolated & sequenced.
- Partial sequence for platelet-derived growth factor (PDGF) sequenced & published; PDGF stimulates proliferation of cells.
- R.F. Doolittle was maintaining one of the earliest home-grown databases of published aa sequences.

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment

- **Early 1970s**: SSV causes cancer in some species of monkeys.
- 1970s: infection by certain viruses cause some cells in culture (in vitro) to grow without bounds.
 - Hypothesis: Oncogenes in viruses encode cellular growth factors (proteins to stimulate growth); Uncontrolled quantities of growth factors produced by infected cells cause cancer-like behavior.

1983:

- Oncogene from SSV called v-sis isolated & sequenced.
- Partial sequence for platelet-derived growth factor (PDGF) sequenced & published; PDGF stimulates proliferation of cells.

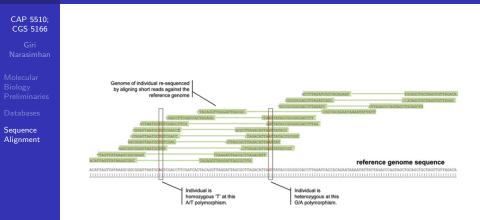
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- R.F. Doolittle was maintaining one of the earliest home-grown databases of published aa sequences.
- Sequence Alignment of v-sis and PDGF had surprises.

PDGF and v-SIS

CAP 5510; CGS 5166

Giri Narasimhan


Molecular Biology Preliminaries

Databases

Sequence Alignment

- Alignment was good.
- Two regions of alignment
 - region of 31 aa with 26 matches
 - region of 39 with 35 matches
- Conclusion:
 - Previously harmless virus incorporates growth-related gene (proto-oncogene) of its host into its genome.
 - Gene gets mutated in the virus, or moves closer to a strong enhancer, or moves away from a repressor.
 - When virus infects a cell, it causes uncontrolled amount of growth factor.
- Several other oncogenes known to be similar to growth-regulating proteins in normal cells.

7. Can help describe motifs, domains, and families of sequences

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Implications of Sequence Alignment

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie

Databases

Sequence Alignment

- Mutation in DNA is a natural evolutionary process. Thus sequence similarity may indicate common ancestry.
- In biomolecular sequences (DNA, RNA, protein), high sequence similarity implies significant structural and/or functional similarity.

Similarity vs. Homology

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie

Databases

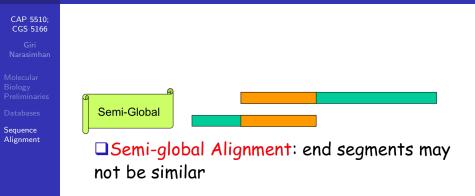
Sequence Alignment

- Homologous sequences share common ancestry.
- Similar sequences are near to each other by some appropriately defined measurable criteria.

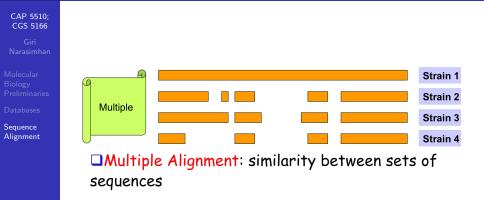
Types of Sequence Alignment $\dots 1$

CAP 5510; CGS 5166						
Giri Narasimhan						
Molecular Biology Preliminaries						
Databases	¶					HIV Strain 1
Sequence Alignment	Global					HIV Strain 2
	Global Alignment: similarity over entire length					

<□> <□> <□> <□> <=> <=> <=> <=> <<


Types of Sequence Alignment ... 2

Local Alignment: no overall similarity, but some segment(s) is/are similar


▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Types of Sequence Alignment ... 3

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Types of Sequence Alignment ... 4

Sequence Alignment Algorithms

CAP 5510; CGS 5166 Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment Global alignments: Needleman-Wunsch-Sellers 1970
 Local alignments: Smith-Waterman 1981
 Both use Dynamic Programming

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

How to Score Mismatches

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie

Databases

Sequence Alignment

	A	С	D	E	F	G	Η -	->
А	4	0	-2		-2	0	-2	
С	0	9	-3	-4	-2	-3	-3	
D	-2	-3	6	2	-3	-1	-1	
Е	-1	-4	2	5	-3	-2	9	
F	-2	-2	-3	-3	6	-3	<i>f</i>	
G	0	-3	-1	-2	-3	ſ		

Revolution in Sequence Alignment Algorithms

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

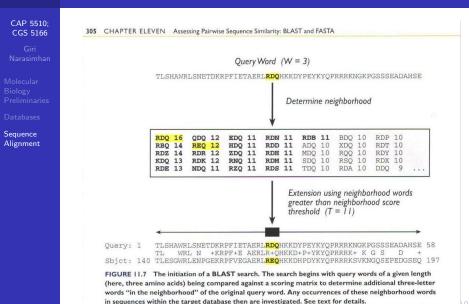
CAP 5510; CGS 5166 Giri Narasimhan Molecular Biology Preliminaries Databases Sequence Alignment Alignment Sequence

Revolution in Sequence Alignment Algorithms

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminarie


Databases

Sequence Alignment

- **FASTA**: Lipman, Pearson '85, '88
- Basic Local Alignment Search Tool (BLAST): Altschul, Gish, Miller, Myers, Lipman '90

- Both programs:
 - search entire databases
 - tremendous speed and sensitivity
 - report statistical significance

BLAST

BLAST Strategy & Improvements

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie:

Databases

Sequence Alignment

- Lipman et al.: speeded up finding runs of hot spots.
- Eugene Myers 94: Sublinear algorithm for approximate keyword matching.
- Karlin, Altschul, Dembo 90, 91: Statistical Significance of Matches

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

BLAST Variants

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminaries

Databases

Sequence Alignment

- Nucleotide BLAST
 - blastn
 - MEGABIAST
 - Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering)
- Protein BLAST
 - blastp
 - PSI-BIAST
 - PHI-BLAST
 - Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering, PAM-30)
- Translating BLAST
 - blastx: Search nucleotide sequence in protein database (6 reading frames)
 - **T**blastn: Search protein sequence in nucleotide dB

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie:

Databases

Sequence Alignment ■ Type of query: nucleotide / protein

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

CAP 5510; CGS 5166 Giri

Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment Type of query: nucleotide / protein

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Word size, *w*

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment ■ Type of query: nucleotide / protein

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Word size, *w*
- Gap penalties, *p*₁, *p*₂

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment ■ Type of query: nucleotide / protein

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Word size, *w*
- Gap penalties, *p*₁, *p*₂
- Threshold scores, *S*, *T*

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment ■ Type of query: nucleotide / protein

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Word size, *w*
- Gap penalties, *p*₁, *p*₂
- Threshold scores, *S*, *T*
- E-value cutoff, E

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment

- Type of query: nucleotide / protein
- Word size, *w*
- Gap penalties, *p*₁, *p*₂
- Threshold scores, *S*, *T*
- E-value cutoff, E
 - E-value, *E*, is the expected number of sequences that would have an alignment score greater than the current score, *S*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment

- Type of query: nucleotide / protein
- Word size, *w*
- Gap penalties, *p*₁, *p*₂
- Threshold scores, *S*, *T*
- E-value cutoff, E
 - E-value, *E*, is the expected number of sequences that would have an alignment score greater than the current score, *S*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Number of hits to display, H

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment

- Type of query: nucleotide / protein
- Word size, w
- Gap penalties, *p*₁, *p*₂
- Threshold scores, *S*, *T*
- E-value cutoff, E
 - E-value, *E*, is the expected number of sequences that would have an alignment score greater than the current score, *S*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Number of hits to display, H
- Database to search, D

CAP 5510; CGS 5166

Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment

- Type of query: nucleotide / protein
- Word size, w
- Gap penalties, *p*₁, *p*₂
- Threshold scores, *S*, *T*
- E-value cutoff, E
 - E-value, *E*, is the expected number of sequences that would have an alignment score greater than the current score, *S*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Number of hits to display, H
- Database to search, D
- Scoring Matrix, M

BLAST Database and Scoring Matrix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CAP 5510; CGS 5166 Giri Narasimhan

Molecular Biology Preliminarie

Databases

Sequence Alignment Databases:

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie:

Databases

Sequence Alignment

Databases:

 Protein: NR)non-redudant, SwissPROT/UniPROT, pdb, custom

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CAP 5510; CGS 5166 Giri

Sequence Alignment Databases:

- Protein: NR)non-redudant, SwissPROT/UniPROT, pdb, custom
- Nucleotide: NR, dbest, dbsts, htgs, gss, pdb, vector,

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment

- Databases:
 - Protein: NR)non-redudant, SwissPROT/UniPROT, pdb, custom
 - Nucleotide: NR, dbest, dbsts, htgs, gss, pdb, vector,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Scoring Matrices

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment

- Databases:
 - Protein: NR)non-redudant, SwissPROT/UniPROT, pdb, custom
 - Nucleotide: NR, dbest, dbsts, htgs, gss, pdb, vector,

- Scoring Matrices
 - PAM Matrices: PAM 40, 160, 250

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment

- Databases:
 - Protein: NR)non-redudant, SwissPROT/UniPROT, pdb, custom
 - Nucleotide: NR, dbest, dbsts, htgs, gss, pdb, vector,
- Scoring Matrices
 - PAM Matrices: PAM 40, 160, 250 going fmor short alignments with high similarity (70-90 %) to members of a protein family (50-60 %), to longer alignments with divergent homologous sequences (less than 30 %)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

BLOSUM Matrices: BLSOUM90, 80, 62, 30

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment

- Databases:
 - Protein: NR)non-redudant, SwissPROT/UniPROT, pdb, custom
 - Nucleotide: NR, dbest, dbsts, htgs, gss, pdb, vector,
- Scoring Matrices
 - PAM Matrices: PAM 40, 160, 250 going fmor short alignments with high similarity (70-90 %) to members of a protein family (50-60 %), to longer alignments with divergent homologous sequences (less than 30 %)
 - BLOSUM Matrices: BLSOUM90, 80, 62, 30 going fmor short alignments with high similarity (70-90 %) to members of a protein family (50-60 %), to weak homologs (30-40 %), to longer alignments with divergent homologous sequences (less than 30 %) vector,

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment

- Databases:
 - Protein: NR)non-redudant, SwissPROT/UniPROT, pdb, custom
 - Nucleotide: NR, dbest, dbsts, htgs, gss, pdb, vector,
- Scoring Matrices
 - PAM Matrices: PAM 40, 160, 250 going fmor short alignments with high similarity (70-90 %) to members of a protein family (50-60 %), to longer alignments with divergent homologous sequences (less than 30 %)
 - BLOSUM Matrices: BLSOUM90, 80, 62, 30 going fmor short alignments with high similarity (70-90 %) to members of a protein family (50-60 %), to weak homologs (30-40 %), to longer alignments with divergent homologous sequences (less than 30 %) vector,

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment Homology is often characterized by significant similarity over entire sequence or strong similarity in key places.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminaries

Databases

Sequence Alignment

- Homology is often characterized by significant similarity over entire sequence or strong similarity in key places.
- Matches that are > 50% identical in a 20-40 aa region occur frequently by chance

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie

Databases

Sequence Alignment

- Homology is often characterized by significant similarity over entire sequence or strong similarity in key places.
- Matches that are > 50% identical in a 20-40 aa region occur frequently by chance
- Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie

Databases

Sequence Alignment

- Homology is often characterized by significant similarity over entire sequence or strong similarity in key places.
- Matches that are > 50% identical in a 20-40 aa region occur frequently by chance
- Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Homology is transitive.

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie

Databases

Sequence Alignment

- Homology is often characterized by significant similarity over entire sequence or strong similarity in key places.
- Matches that are > 50% identical in a 20-40 aa region occur frequently by chance
- Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
- Homology is transitive. A homologous to B & B to C ⇒ A homologous to C.

CAP 5510; CGS 5166 Giri Narasimban

Molecular Biology Preliminarie:

Databases

Sequence Alignment

- Homology is often characterized by significant similarity over entire sequence or strong similarity in key places.
- Matches that are > 50% identical in a 20-40 aa region occur frequently by chance
- Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
- Homology is transitive. A homologous to B & B to C ⇒ A homologous to C.
- Low complexity regions, transmembrane regions and coiled-coil regions frequently display significant similarity without homology.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CAP 5510; CGS 5166 Giri Narasimhan

Molecular Biology Preliminarie:

Databases

Sequence Alignment

- Homology is often characterized by significant similarity over entire sequence or strong similarity in key places.
- Matches that are > 50% identical in a 20-40 aa region occur frequently by chance
- Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
- Homology is transitive. A homologous to B & B to C ⇒ A homologous to C.
- Low complexity regions, transmembrane regions and coiled-coil regions frequently display significant similarity without homology.
- Greater evolutionary distance implies that length of a local alignment required to achieve a statistically significant score also increases.

Rules of Thumb ... 2

CAP 5510; CGS 5166 Giri Narasimhan

Molecular Biology Preliminaries

Databases

Sequence Alignment Results of searches using different scoring systems may be compared directly using normalized scores.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rules of Thumb ... 2

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie

Databases

Sequence Alignment

- Results of searches using different scoring systems may be compared directly using normalized scores.
- If S is the (raw) score for a local alignment, the normalized score S' (in bits) is given by

$$S' = \frac{\lambda - \ln K}{\ln 2}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The parameters depend on the scoring system.

Rules of Thumb ... 2

CAP 5510; CGS 5166 Giri

Molecular Biology Preliminarie:

Databases

Sequence Alignment

- Results of searches using different scoring systems may be compared directly using normalized scores.
- If S is the (raw) score for a local alignment, the normalized score S' (in bits) is given by

$$S' = \frac{\lambda - \ln K}{\ln 2}$$

The parameters depend on the scoring system.

Statistically significant normalized score,

 $S' > \log(N/E)$

where E-value = E and N = size of search space.